
Algorithms Exam TIN093∗/DIT602

Course: Algorithms

Course code: TIN 093, TIN 092 (CTH), DIT 602 (GU)

Date, time: 21st October 2017, 14:00–18:00

Building: SBM

Responsible teacher: Peter Damaschke, Tel. 5405

Examiner: Peter Damaschke

Exam aids: one A4 paper (both sides), dictionary,

printed Lecture Notes and slides (possibly with own annotations),

any edition of Kleinberg, Tardos: “Algorithm Design”.

Time for questions: around 15:00 and around 16:30.

Solutions: will appear on the course homepage.

Results: will appear in ladok.

Point limits: CTH: 28 for 3, 38 for 4, 48 for 5; GU: 28 for G, 48 for VG;

PhD students: 38. Maximum: 60.

Inspection of grading (exam review):

Time will be announced on the course homepage.

∗also forTIN092

1

Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new sheet of paper.

• Write your exam number on every sheet.

• Write legible. Unreadable solutions will not get points.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing may obscure the actual solutions.

• Motivate all claims and answers.

• Strictly avoid code for describing an algorithm.

Instead explain how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts that are known from the course material can be used.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2

Problem 1 (12 points)

Let x1, . . . , xn be positive real numbers which are however smaller than 1.

We wish to find a pair i, j such that xi + xj ≤ 1, but xi + xj is as close as

possible to 1. In other words, the difference 1− (xi +xj) shall be minimized

but still be non-negative.

An O(n2)-time algorithm for this problem is pretty obvious: examine all

pairs and take the best. But we can do faster:

First sort the numbers, that is, re-index them such that x1 ≤ . . . ≤ xn.

Initially let i := 1 and j := n. As long as i < j, repeat the following actions:

(1) If xi + xj ≤ 1 then increment i, that is, i := i+ 1.

(2) If xi + xj > 1 then decrement j, that is, j := j − 1.

Always maintain the largest sum xi + xj ≤ 1 that has been found so far.

1.1. How much time does this algorithm need? (Also explain your answer.)

You can consider operations with real numbers as elementary. (5 points)

1.2. Show that this algorithm returns, in fact, the largest sum xi + xj ≤ 1.

You need to argue why the optimal pair is not overlooked, although by far

not all pairs i, j are considered. (7 points)

Remark/hint: It can be debated whether this is a typical greedy algorithm,

however the argument needed in 1.2 is much reminescent of an exchange

argument.

3

Problem 2 (12 points)

We had solved the String Editing problem, with two input strings named

A = a1 . . . an and B = b1 . . . bm, by a dynamic programming algorithm. The

core of this algorithm was the edit distance formula

OPT (i, j) = min{OPT (i−1, j)+1, OPT (i−1, j−1)+δij , OPT (i, j−1)+1},

where δij = 1 was defined by: δij = 1 if ai 6= bj , and δij = 0 if ai = bj . Initial

values were OPT (i, 0) = i and OPT (0, j) = j for all i and j, respectively.

But now the famous microbiologist Prof. Dr. Chris-Per Kaas faces some

variations of the String Editing problem:

2.1. A must be transformed into B by a minimum number of insert and

delete operations, whereas characters cannot directly be replaced by other

characters at unit cost.

Adapt the dynamic programming algorithm to this new problem, and ex-

plain why your modification correctly solves the problem. (2 points)

2.2. A must be transformed into B by a minimum number of insert and re-

place operations, whereas characters cannot be deleted. (Clearly, a solution

can only exist if A is no longer than B.)

Again: Adapt the dynamic programming algorithm to this new problem,

and explain why your modification correctly solves the problem. (4 points)

2.3. A must be transformed into B by insert operations, whereas characters

can neither be deleted nor be replaced by other characters. Again, a solution

does not always exist, but if one exists, the algorithm must find some. Here

we do not need dynamic programming.

Give a greedy algorithm for this problem version, along with a time bound

and correctness argument. (A fully worked-out correctness proof is not

expected, but the key argument should be visible.) The time bound should

be considerably better than the known one for the original String Editing

problem. (6 points)

4

Problem 3 (8 points)

We are given b bins, which are denoted by indices 1, . . . , b. For each index i,

the ith bin contains pi “positive” and ni “negative” objects. Furthermore,

a number f is given.

We wish to split the set of bins {1, . . . , b} into two sets P and N such that∑
i∈P ni ≤ f and

∑
i∈N pi is minimized.

How can you compute such sets P,N ⊆ {1, . . . , b}, and how much time does

this take? Express your time bound as a function of b and f .

Hint: You should avoid developing a new algorithm from scratch. Instead,

you can reformulate the problem to obtain a similar one that we have already

solved.

Motivation of Problem 3
(You can skip this paragraph during the exam; it is not needed for solving the
exercise, but maybe you are curious afterwards.)

The problem can appear in classification tasks in machine learning. Objects in a

sample are grouped into abstract “bins”, according to their properties, and every

object is also labeled as either positive or negative. Assuming that the sample is

representative, we want to predict the label of new, previously unseen objects, only

based on their properties. The cases predicted as positive/negative are collected

in P/N . A given rate of false positive predictions is allowed (the negative objects

in P), and under this restriction we wish to minimize the rate of false negative

predictions (the positive objects in N).

5

Problem 4 (4 points)

The time analysis of the known divide-and-conquer algorithm for Counting

Inversions had led to the reucrrence T (n) = 2T (n/2) + O(n) with solution

T (n) = O(n log n). There we had counted operations with arbitrary integers

as elementary operations. If we are, instead, interested in the number of

operations with digits, we can see that a merging phase has to add O(n)

numbers of size O(n), hence with O(n log n) digits, and therefore merging

needs O(n log n) digit operations. Now we get the recurrence

T (n) = 2T (n/2) +O(n log n).

Unfortunately it is not covered by the “master theorem” for recurrences, yet

we can follow the same solution method. We do the first step: Repeated

substitution yields T (n) in explicit form:

T (n) =

log2 n∑
i=0

2i(n/2i) log(n/2i).

(We may assume that n is a power of 2, and that the constant in the

O(n log n) term is 1, since all this does not affect the O-result.)

Show that this sum is bounded by O(n(log n)2). The calculation is short

and straightforward, but please be precise.

6

Problem 5 (10 points)

Reminder: A clique in a graph is a subset of nodes such that all pairs of

nodes in this subset are joined by edges. (“All possible edges exist.”)

We define the problem Double Clique as follows. We are given an undirected

graph G = (V,E) and an integer k. The problem is to decide whether G

contains two disjoint cliques, each with k nodes.

More formally, the problem asks, for the given graph G: Do there exist two

node sets V1 ⊂ V and V2 ⊂ V such that |V1| = |V2| = k, V1 ∩ V2 = ∅, and

each of V1 and V2 is the node set of a clique in G?

Prove that Double Clique is NP-complete. In more detail:

5.1. Why is Double Clique in NP? (2 points)

5.2. Describe a reduction from a suitable “start problem” to Double Clique.

Make sure that it needs only polynomial time. (4 points)

5.3. Prove that your reduction is correct, that is: Show that any given

instance of your start problem is equivalent to the instance of Double Clique

that your reduction constructs. (4 points)

Remark: Do not think complicated in 5.2 – an idea of a possible reduction

should be rather obvious.

7

Problem 6 (14 points)

The following problem is of great interest for scheduling of unit-time jobs

under precedence constraints.

A k-coloring of a directed graph G = (V,E) is a function c that assigns

to every node v an integer c(v) ∈ {1, . . . , k} (a “color”) such that every

directed edge (u, v) ∈ E satisfies c(u) < c(v). The problem is to construct

a k-coloring with minimum k. Obviously, a coloring can exist only if the

graph is a DAG.

For k-coloring of undirected graphs, the condition was only c(u) 6= c(v)

on every undirected edge. While the usual, undirected coloring problem

is known to be NP-complete, amazingly the directed coloring problem on

DAGs can be solved in polynomial time, as you are supposed to show now.

We split the task into three small exercises that you can solve independently

one-by-one.

Given a DAG G = (V,E), we first create an additional node s and all

possible directed edges (s, v), v ∈ V . We define c(s) := 0. For any two

nodes, let L(u, v) denote the length of a longest (not shortest!) directed

path from u to v. (The length of a path is simply the number of edges.)

6.1. Prove that the function defined by c(v) := L(s, v) for all v is a coloring

of G = (V,E). That is, you must show c(u) < c(v) for every directed edge

(u, v) ∈ E. (5 points)

6.2. We claim that every possible coloring c′ of G must have the property

c′(v) ≥ L(s, v) for all nodes v. Explain why. (4 points)

6.3. Finally, based on 5.1 and 5.2, propose an algorithm that solves the

k-coloring problem on DAGs. Explain why it is correct, and give a time

bound. (5 points)

8

Solutions (attached after the exam)

1.1. Sorting costs O(n log n) time. Then, every iteration either increases i

or decreases j, which can happen at most n times. Every iteration costs

O(1) time, since a constant number of additions and comparisons are done.

Thus, the loop costs O(n) time. In total we need O(n log n) time. (5 points)

1.2. Consider the first step where i = 1 and j = n.

(1) If x1 + xn ≤ 1 then x1 + xn is a valid solution. But there is no need to

consider other pairs with x1. If x1 + xj ≤ 1 for any j, then xj ≤ xn implies

x1 + xj ≤ x1 + xn ≤ 1. That is, we can exchange xj by xn and get a better

solution. Therefore it is safe to ignore x1 henceforth. We can set i := 2 and

consider the instance x2, . . . , xn only.

(2) If x1 + xn > 1 then it is safe to ignore xn henceforth: Since x1 ≤ xj for

all j, we have xj + xn > 1 ≥ x1 + xn > 1. Hence all other pairs with xn
are invalid solutions, too. Therefore we can set j := n− 1 and consider the

instance x1, . . . , xn−1 only.

The same arguments as above apply to the instance xi, . . . , xj for general i

and j. (7 points)

2.1. We keep the formula for OPT (i, j) but we make replace operations too

expensive to be applied, simply by defining δij =∞ if ai 6= bj . Alternatively

we can define δij = 2 if ai 6= bj , since a replace operation is equivalent to

one insert and one delete operation. (2 points)

2.2. The term OPT (i − 1, j) + 1 accounts for the case that we transform

a1 . . . ai−1 into b1 . . . bj and delete ai at unit cost. By omitting this term we

disable this option. Hence

OPT (i, j) = min{OPT (i− 1, j − 1) + δij , OPT (i, j − 1) + 1}

is a suitable dynamic programming formula for this problem version. We

must also change the initial values, since no solution exists if A is longer

than B. For instance, we may set OPT (i, 0) :=∞ for all i > 0. (4 points)

2.3. Scan the string A from left to right and assign every symbol in A to

the earliest possible symbol in B. The time is O(n + m), because we need

to traverse both A and B only once.

The correctness argument is easier to write down by using a more formal

description of this greedy algorithm: We construct a function g inductively.

9

Let g(0) := 0, and let g(i + 1) be the smallest j > g(i) such that ai = bj .

We align every ai to bg(i). A solution exists if and only if g(n) still exists.

To show correctness, we consider any different solution to the instance,

described by another function h. Let i be the smallest index such that

h(i + 1) 6= g(i + 1). Since g(i + 1) is the smallest j > g(i) = h(i) such

that ai = bj , we have h(i + 1) > j = g(i + 1). Thus we can re-define

h(i+ 1) := j and get another valid solution where also h(i+ 1) = g(i+ 1).

By this exchange argument we can, step by step, turn h into g. (6 points)

3. Minimizing
∑

i∈N pi is equivalent to maximizing
∑

i∈P pi, because
∑

i pi
is fixed by the given instance, and

∑
i∈N pi+

∑
i∈P pi =

∑
i pi. Now it should

be evident that the given problem is just the Knapsack problem with the

following input parameters: capacity f , sizes ni, and values pi. (Consider P

as the knpasack to be filled.) As we know, Knapsack can be solved in O(bf)

time by dynamic programming. (8 points)

4. The only idea needed here is to simplify the logarithmic term.

T (n) =
∑log2 n

i=0 2i(n/2i) log(n/2i) <
∑log2 n

i=0 2i(n/2i) log n =
∑log2 n

i=0 n log n =

O(n(log n)2). (4 points)

5.1. We can verify in polynomial time that two given subsets of nodes are

cliques, that they are disjoint, and that they have k nodes each. (2 points)

5.2. Naturally we give a reduction from Clique. Let H be any graph, and k

an integer. We construct a graph G, simply by taking two copies of H on

two disjoint node sets. Obviously, copying can be done in polynomial time.

We keep the given k. (4 points)

5.3. If H has a clique of k nodes, then, clearly, G has two disjoint cliques of

k nodes, in the two copies of H. Conversely, suppose that G has two disjoint

cliques of k nodes. Consider any one of them. This clique is entirely in one

copy of H, because no edges exist between the two copies. Therefore H has

a clique of k nodes. (4 points)

6.1. Consider a longest path Q from s to u. By definition, its length is c(u).

Appending the edge (u, v) yields a path from u to v. The node v is not

already on Q, since this would create a directed cycle. Hence we have found

a path from s to v with c(u) + 1 edges. Thus c(v) ≥ c(u) + 1. (5 points)

10

6.2. This follows instantly from the condition c′(u) < c′(v) for every directed

edge: Along a directed path from s to any node, the value of c′ inreases by

at least 1 on every edge, therefore the color must be at least the path length.

In particular, this holds also for a longest path. (4 points)

6.3. Compute the lengths L(s, v) of longest paths from s to all other nodes

v. As we know, this can be done in O(|E|) time. Due to 6.1 and 6.2, L(s, v)

equals the smallest possible color of v. Hence, if all colors (i.e., lengths) are

bounded by k, we have found a k-coloring, and otherwise we know that no

k-coloring can exist. (5 points)

Addendum to solutions (attached later)

An alternative way to write the proof of 1.2:

Let xa + xb be an optimal solution. We can miss it in only two ways:

(1) We reach i < a and j = b, but next we decrement j.

(2) We reach i = a and j > b, but next we increment i.

Both cases lead to contradictions:

(1) Here xi + xj ≤ xa + xb ≤ 1, and in this case i is incremented instead.

(2) Here xa + xb ≤ xi + xj . If xb = xj , we have just found another optimal

solution, which is fine. If xb < xj then, since xa + xb ≤ 1 was optimal, we

have xi + xj > 1, and in this case j is decremented instead.

11

