
Sample Exam 1

Oct. 15 2009
kl 1400 – 1800
byggnad V

Ansvarig:
Devdatt Dubhashi Tel. 073 932 2226 Rum 6479 EDIT

Poäng: 60
Betygsgränser: Chalmers 5:48, 4:36, 3:24

GU VG:48, G:28
Doktorander G:36

Hjälpmedel: kursboken, anteckningar

• Recommended: First look through all questions and make sure that you under-
stand them properly. In case of doubt, do not hesitate to ask.

• Answer all questions in the given space on the question paper (the
stapled sheets of paper you are looking at). The question paper will
be collected from you after the exam. Only the solutions written in
the space provided on the question paper will count for your points.

• Use extra sheets only for your own rough work and then write the final answers
on the question paper.

• Answer concisely and to the point. (English if you can and Swedish if you must!)

• Code strictly forbidden! Motivated pseudocode or plain but clear English/Swedish
description is fine.

Lycka till!

12005 läsperiod 1, INN200 (GU) / TIN090 (CTH).

1



Problem 1 Finding the m smallest [10] An array T contains n numbers. You
want to find the m smallest numbers where m is much smaller than n. Would you

(a) sort T and pick the first m,

(b) call select(T,i) for i = 1, 2, . . . ,m, or

(c) use some other method?

Justify your answer by comparing the time complexity of the different methods.
Solution: (a) O(n + logn + m) = O(n log n). (b) O(nm) using linear time SELECT
algorithm. Better is to use SELECT (T, m) to find mth smallest element x and then
run through the array to output all the elements at most x for a total time of O(n).

Problem 2 Changing Coins [10] Suppose that you have coins available in denomi-
nations (i.e. values) of 1, p, p2, . . . , pn, where p > 1 and n ≥ 0 are integers (for example,
1, 5, 25 with p = 5 and n = 2). You have an unlimited number of coins of each type.
What algorithm will you use to find the minimum number of coins required to change
a given amount? Give a short outline of a proof in justification.
Solution: Greedy algorithm which uses the largest coin possible at each step: for
amount A use largest coin c at mos A, then repeat with A − c. To see optimality,
consider an optimal algorithm and order the coins it uses from largest to least. Consider
the first time it uses a different coin from the one used greedy algorithm, p. It uses
smaller value coins from this point. Look at the first time these coins sum to a value
s ≥ pi. We claim s = pi for otherwise since s − pi is divisible by the last coin used
pj , we can remove the last coin and still exceed pi contradicting that this was the first
time the sum exceeded pi. Thus we may replace the coins adding to s by one coin pi

contradicting that we had an optimal algorithm. Thus the optimal algorithm agrees
with greedy at each step.

Problem 3 Minimize Idle Time [10] Chalmers super-commputing center has its
super computer running from 10 AM to 5 PM. Let’s translate time and denote this
interval [0, M ]. At the start of the day it receives n requests where request i wants to
reserve the supercomputer from time 0 ≤ si to fi ≤M . You want to schedule the jobs
so that the supercomputer time is left idle as little as possible.

(a) Give counter-examples to show that neither of the follwing greedy heuristics gives
the optimal solution: longest job first, earliest finishing job first. Solution:
Pictures drawn in class.

Now we develop a dynamic programming algorithm. Let OPT (i) denote the optimal
solution considering only jobs 1 · · · i.

(b) First say why we may sort the jobs in order of finishing time and assume that
the last finishing job has fi = M . Solution: Without loss of generality we may
number jobs in oredr of finishing time and we need only consider an interval [si, fj ]
where si is the earliest start time andfi the latest finish time, because outside
this interval, the supercomputer witll certainly be idle.

(c) What is OPT (1)? Solution: OPT (1) = 0.

(d) Give a recurrence for OPT (i) based on what we do with job i. Solution:

OPT (i) = min
(
OPT (i− 1) + fi − fi−1, OPT (p(i)) + si − fp(i)

)
.

2



(e) Implement the recurrence efficiently in pseudocode and analyse its time and space
complexity. Solution

M[1] = 0
for i= 2 to n do
A = M[i-1] + f[i] - f[i-1] , B = M[p[i]] + s[i] - f[p[i]]
if A > B then M[i] = B else M[i]= A.

return M[n]

(f) How would you modify your algorithm to also produce a list of the jobs scheduled?
Solution Keep track of which choice is made in the recursion:

M[1] = 0, b[1] = 1
for i= 2 to n do
A = M[i-1] + f[i] - f[i-1] , B = M[p[i]] + s[i] - f[p[i]]
if A > B then M[i] = B , b[i] = 0 else M[i]= A. b[i] = 1

i= n
while i > n do if b[i] = 1 then output i, i = p[i]

else i = i -1.

Problem 4 Manhattan Skyline [10] With the advent of high speed graphics work-
stations, CAD (computer-aided design) and other areas (CAM, VLSI design) have made
increasingly effective use of computers. One of the problems with drawing images is
the elimination of hidden lines – lines obscured by other parts of a drawing.
You are to design a program to assist an architect in drawing the skyline of Man-
hattan given the locations of the buildings in the city. As we know, in Manhattan,
all buildings are rectangular in shape and they share a common bottom (the city is
very flat). The city is also viewed as two-dimensional. There are n buildings specified
by three arrays L[1 . . . n], R[1 . . . n] and H[1 . . . n]. Building i has left side at coordi-
nate L[i], right coordinate at R[i] and height H[i]. In the figure below, buildings are
shown on the left with L = (12, 2, 14, 19, 3, 1, 24, 23) R = (16, 7, 25, 22, 9, 5, 28, 29) and
H = (7, 6, 3, 18, 13, 11, 4, 13). The skyline, shown on the right, is represented by the two
arrays: (1, 3, 9, 12, 16, 19, 22, 23, 29) and (11, 13, 0, 7, 3, 18, 3, 13, 0) where the first array
gives the x coordinate and the second the height of the skyline at the corresponding co-

ordinate.

3



(a) Give the overall strategy of a Divide-and-Conquer algorithm. Solution: Divide
the set of buildings into two roughly equal size parts. Compute the skylines of
the two subsets recursively, and then combine them into an overall skyline.

(b) Explain clearly what the recursive subproblems should return. Solution: Each
of the two sub-problems should return two lists representing the skyline of the
corresponding skyline: the left subproblem returns the arrays xL, hL and thr right
subproblem xR, hR.

(c) Explain clearly the Conquer step: how will you combine the solutions to the
subproblem to get a solution for the original problem? This is the most crucial
part! Solution: Like Mergesort, we scan the x–arrays from left to right and at
each coordinate we find which of the two skyline is higher using the height arrays.
Thus we merge the two x arrays and create the corresponding overall h array as
we go along.

(d) Write a recurrence for the running time and give a short justification. Deduce
the running time of the algorithm in O() notation. Solution: The recurrence for
the running time is T (n) = 2T (n/2)+O(n) because the divide and combine steps
can be done in time O(n). The soltuion to the recurrence is T (n) = O(n log n).

Problem 5 Taxi Göteborg [10] You are working for Taxi Gẗeborg and are dveloping
software for an automated response system. At a given point in time, there are m taxis
at different locations in the city and there are n customers requesting a taxi, also from
various parts of the city. Customer i needs the taxi within ti minutes. Using some other
nifty software using Dijkstra with GPS, you can determine if taxi j can reach customer i
within ti minutes in Gẗeborg traffic. Now you need to determine the maximum number
of customers you can satisfy. Give an efficient algorithm and analyse its running time.
Solution First create abipartite graph with taxis on the left, customers on the right,
and connect taxi j to customer i if your GPS software says it can raech the customer in
time ti. Now create aflow network with a source s having edges to all taxis of capacity 1
a sink t which has edges from all customers with capacity 1 and edges int he bipartitte
graph are of capacity 1 and directed from taxis to customers. There is a flow of integer
value f from s to t exactly if f customers can be satisfied hence the maximum number
of satisfied customers equals the max flow in the network. Since all capacities are 1,
the Ford Fulkerson algorithm can compute this in time O(nm).

Problem 6 Multiple Interval Scheduling [10] We’ve seen the Interval Scheduling
problem in class; here we consider a computationally much harder version of it that
we’ll call Multiple Interval Scheduling.As before, you have a processor that is
available to run jobs over some period of time. (E.g. 9 AM to 5 PM.)
People submit jobs to run on the processor; the processor can only work on one job at
any single point in time. Jobs in this model, however, are more complicated than we’ve
seen in the past: each job requires a set of intervals of time during which it needs to
use the processor. Thus, for example, a single job could require the processor from 10
AM to 11 AM, and again from 2 PM to 3 PM. If you accept this job, it ties up your
processor during those two hours, but you could still accept jobs that need any other
time periods (including the hours from 11 to 2).
Now, you’re given a set of n jobs, each specified by a set of time intervals, and you
want to schedule as many jobs as possible. Call this problem OPT-MS. Consider the

4



decision version of the problem. Y/N-MS: For a given number k, is it possible to accept
at least k of the jobs so that no two of the accepted jobs have any overlap in time?

(a) Suppose someone gives you a black box to solve the decision version Y/N-MS
in polynomial time. Show that then you could use it to solve OPT-MS also
in polynomial time. Solution: Run Y/N-MS with k = 1, 2... until you get a
“no” answer. The tunnning time is at most np(n) where p(n) is running time of
Y/N-MS.

(b) Show that Y/N-MS is in NP. Solution: A certificate is a set of k jobs and the
certifying algorithms simply checks that no two of these jobs has an interval in
common, clearly polynomial time.

(c) State in one line the significance of showing that this problem is NP-complete.
Solution: It is very unlikely that there is an efficient i.e. polynomial time algo-
rithm for this problem.

(d) Show that Y/N-MS is NP-complete. (Hint: reduction from INDEPENDENT-
SET: think of the nodes of a graph as job requests with the incident edges as
its associated time intervals.). Solution: iven a graph G = (V,E) and k ≥ 0,
divide the interval 10 Am to 5 Pm into m disjoint intervals, one corresponding to
each edge in E. Now create n jobs one corresponding to each vertex in V . The
intervals for the job corresponding to v ∈ V are those corresponding to the edges
incident on v inG. It is easy to see that two jobs conflict iff they correspond to
vertices that are adjacent in G. Thus a set of jobs can be scheduled exactly if te
corresponding vertices form an independent set in G. Thus there is a set of at
least k jobs that can be scheduled iff there is an independent set of size at lest k
in G.

5


