I) We are calculating the impedances related to an inductor and a capacitor. Which of the following is the correct?
A) Inductive reactance translates into a positive imaginary impedance while capacitive reactance translates into a negative imaginary impedance.
B) Both inductive and capacitive reactance translate into a positive imaginary impedance.
C) It depends on the values of the inductor and the capacitor.
D) Inductive reactance translates into a negative imaginary impedance while capacitive reactance translates into a positive imaginary impedance
II) Rapresent the following voltage sources in the phasor form.
A) $u_{D C}(t)=150 \mathrm{~V} \rightarrow 150 \angle 0^{\circ} \mathrm{V}$
B) $u_{s 1}(t)=120 \cos \left(100 t+45^{\circ}\right) V \rightarrow 120 \angle 45^{\circ} \mathrm{V}$
C) $u_{s 2}(t)=130 \sin (100 t) V \rightarrow 130 \angle-90^{\circ} V$
D) $u_{s 3}(t)=220 \sin \left(100 * 2 \pi * t+75^{\circ}\right) V \rightarrow 220 \angle-15^{\circ} \mathrm{V}$

TIP: $\sin (\omega t)=\cos \left(\omega t-90^{\circ}\right)$
III) What is the configuration of an instrumentational amplifier?
A) Two inverting amplifiers follow by a differential amplifier
B) Two buffer amplifiers follow by a non-inverting amplifier
C) Two differential amplifiers follow by a buffer
D) Two non-inverting amplifiers follow by a differential amplifier
(1)

$$
\begin{aligned}
& R_{1}=70 \Omega \\
& R_{2}=20 \Omega \\
& R_{3}=30 \Omega \\
& R_{4}=5 \Omega \\
& U_{0}=5 \mathrm{~V}
\end{aligned}
$$

Parallellkuppla $\quad R_{13}=R_{1} / / R_{3}=\frac{70.30}{70+30}=21 . \Omega$

$$
R_{24}=R_{2} \| P_{4}=\frac{20.5}{20+5}=4 \Omega
$$

Sp. delning

$$
U_{4}-U_{0} \frac{R_{24}}{R_{24}+R_{13}}=5 \cdot \frac{4}{4+21}=\frac{4}{5} V
$$

$\mathrm{KCL} i \operatorname{nod} A \quad I_{x}+I_{3}-I_{4}=0$

$$
I_{4}=\frac{U_{4}}{R_{4}} ; I_{3}=\frac{U_{0}-U_{4}}{R_{3}}
$$

(2)

$$
I_{x}=I_{4}-I_{3}=\frac{U_{4}}{R_{4}}-\frac{U_{0}-U_{4}}{R_{3}}=
$$

D)

$$
\begin{aligned}
& =\frac{4}{5 \cdot 5}-\frac{\left(5-\frac{4}{5}\right)}{30}=\frac{4}{25}-\frac{21}{5 \cdot 30}= \\
& =\frac{1}{5}\left(\frac{4}{5}-\frac{7}{10}\right)=\frac{1}{5}\left(\frac{1}{10}\right)=\frac{1}{50} A
\end{aligned}
$$

Sivar: $U_{4}=\frac{4}{5}=0,8 \mathrm{~V}$

$$
I_{x}-\frac{1}{50}=0.02 \mathrm{~A}
$$

4. 10-transforwera knetsen

$$
\begin{aligned}
u_{s}(t) & =12 \cos \left(\omega t+45^{\circ}\right) \mathrm{V} \\
\omega & =4000 \mathrm{rad} / \mathrm{s} \\
R & =2.0 \Omega \\
\frac{1}{1^{\omega} \mathrm{C}} & =-j \frac{}{410^{\circ} \cdot 250.10^{-6}}=-j
\end{aligned}
$$

$$
\begin{aligned}
z & =2 R \|\left(R+\frac{1}{i c c}\right)=\frac{2 R\left(R+\frac{1}{i \omega c}\right)}{2 R+R+\frac{1}{i c}}=\frac{4(2-j)}{6-j}= \\
& =\frac{4(2-j)(6+j)}{(6-j)(6+j)}=\frac{4(12+1-i 6+i 2)}{37}=\frac{4(13-j)}{37}
\end{aligned}
$$

Z mottager komplex effelet $S=P+j Q$

$$
\begin{aligned}
S & =\frac{1}{2} U_{s} I^{*}=\frac{1}{2} U_{s}\left(\frac{U s}{z}\right)^{*}=\frac{1}{2} \frac{\left|U_{s}\right|^{2}}{z^{*}} \cdot \frac{z}{z}= \\
& =\frac{1}{2} \frac{\left|U_{s}\right|^{2}}{|z|^{2}} z \\
|z| & =\frac{4}{37} \sqrt{13^{2}+4^{2}}=1,47
\end{aligned}
$$

Medelelket $P=\operatorname{Re}\{S\}=\frac{1}{2} \frac{\left|U_{s}\right|^{2}}{|z|^{2}} \cdot \operatorname{Re}\{z\}=$

$$
=\frac{1}{2} \frac{12^{2}}{1,47^{2}} \cdot \frac{4}{37} \cdot 13=46.8 \mathrm{~W}
$$

Svar: $P=46,8 \mathrm{~W}$

$$
\begin{aligned}
& R_{1}=200 \Omega \\
& R_{2}=300 \Omega \\
& R_{3}=60 \Omega \\
& R_{4}=220 \Omega \\
& R_{5}=100 \Omega \\
& U=120 \mathrm{~V}
\end{aligned}
$$

a) Tomgaingsspānning U_{t}.
$S_{p . \text { delning }}^{U_{2}} U_{2}=U \frac{R_{2} / I\left(R_{3}+R_{4}\right)}{R_{1}+R_{2} / I\left(R_{3}+R_{4}\right)}=$

$$
\begin{aligned}
& =U \frac{\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}}{R_{1}+\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}}=U \frac{1}{1+\frac{R_{1}\left(R_{2}+R_{3}+R_{4}\right)}{R_{2}\left(R_{3}+R_{4}\right)}}= \\
& =U \cdot \frac{1}{1+\frac{200(300+60+220)}{300(60+220)}=\frac{U}{1+\frac{29}{21}}=0,42 U=U 2} \\
& \\
& \\
& \text { Resistans. (Aotlstate } U \text {) }
\end{aligned}
$$

EkV. Resistans. (nottstate u)

$$
R_{0}=R_{4} \|\left(R_{3}+R_{1} \| R_{2}\right)=\frac{R_{4} \cdot\left(R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)}{R_{4}+R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\ldots 9
$$

$$
\begin{aligned}
& R_{1}=10 \mathrm{k} \Omega \\
& R_{2}=20 \mathrm{k} \Omega \\
& R_{f}=30 \mathrm{k} \Omega \\
& R_{0}=1,0 \mathrm{k} \Omega
\end{aligned}
$$

$\left.\begin{array}{l}\text { Ldeal op. först. } \\ \text { Nee. àtenkopel. }\end{array}\right\} \Rightarrow\left\{\begin{array}{l}\varepsilon=0 \\ i_{o p}=0\end{array}\right.$
Summera strömmar i nod $A \quad(\mathrm{KCl})$

$$
\begin{aligned}
& I_{1}+I_{2}+I_{f}=0 \\
& \frac{U_{1}}{R_{1}}+\frac{U_{2}}{R_{2}}+\frac{U_{0}}{R_{2}}=0 \\
& \begin{aligned}
U_{0} & =-U_{1} \frac{R_{f}}{R_{1}}-U_{2} \frac{R_{f}}{R_{2}}= \\
& =-U_{1} \frac{30}{10}-U_{2} \frac{30}{20}=-3\left(U_{1}+\frac{1}{2} U_{2}\right) V
\end{aligned}
\end{aligned}
$$

$U_{1}[v]$	$U_{2}[v]$	$U_{0}=-3\left(U_{1}+\frac{1}{2} U_{2}\right)$
1	1	$[V]$
1	-1	-4.5
0	-2	$-1,5$
-2	4	3

a) $r<a \quad \vec{E}=0 \quad$ indaringen innestuton it an Ganss-sfite med radion r är 0

b)

