
Databases Exam

TDA357 (Chalmers), DIT620 (University of Gothenburg)

16 March 2018 at 8:30–12:30 in SB Multisal

Department of Computer Science and Engineering

Examiner: Aarne Ranta tel. 031 772 10 82.

Results: Will be published by 6 April.

Exam review: 19 April at 14-16 in room 6106, EDIT Building.

Grades: Chalmers: 24 for 3, 36 for 4, 48 for 5. GU: 24 for G, 42 for VG.

Help material: One “cheat sheet”, which is an A4 sheet with hand-written notes. You may write on both sides of that
sheet. If you bring a sheet, it must be handed in with your answers to the exam questions. One English language
dictionary is also allowed.

Specific instructions: You can answer in English, Danish, Dutch, Finnish, French, German, Italian, Norwegian, Span-
ish, or Swedish (in this exam; next time it can be another set of languages ;-) Begin the answer to each question
(numbers 1 to 6) on a new page. The a,b,c,... parts with the same number can be on the same page. If you need
many pages for one question, number the pages as well, for instance, “Question 3 p. 2”. Write the question number
on every page.

Write clearly: unreadable = wrong! Fewer points are given for unnecessarily complicated solutions. Indicate clearly
if you make any assumptions that are not given in the question. In particular: in SQL questions, use standard SQL
or PostgreSQL. If you use any other variant (such as Oracle or MySQL), say this; but full points are not guaranteed
since this may change the nature of the question.

1

.

2

1. Modelling (12p)

The domain to model is public transport networks. Such a network consists of lines, which run between stops (such
as train stations and bus stops) on scheduled times, and are operated by different kinds of vehicles (such as buses and
trams). A database on this domain is expected to serve for queries like ”how can I get from A to B at 8:00”, ”how
long does it take from A to B”, ”which lines serve the station A”, etc.

We will approach the complex task in smaller steps. We start by building an ER (Entity-Relationship) model in
two steps.

1a (5p)

Build an ER model for the following concepts:
• A stop has a name, which uniquely identifies it. A stop also has a location, which by nature is unique as well

(since there cannot be two stops at the same location).
• A line has a number, which uniquely identifies it. A line also has two stops as its start point and end point.

Moreover, a line has a vehicle, such as tram or bus or ferry.
Also write a database schema, in the form of SQL CREATE TABLE statements, corresponding to this description. The
schema will be graded independently of your ER model. You can get started by deriving the schema from your ER
model, but notice that a schema can often express constraints that the ER model cannot. Therefore. don’t panic if
you cannot express all the constraints in your ER model.

1b (7p)

This is a variation of 1a, where we take into account all the stops along a line, not only the start and end points.
• (like in 1a:) A stop has a name, which uniquely identifies it. A stop also has a location, which by nature is

unique as well (since there cannot be two stops at the same location).
• A line has a number and a vehicle. The number identifies the line uniquely.
• Each line runs through a set of stops, the stops on that line. Each stop on a line has a travel time, which is

the number of minutes it takes to travel to that stop from the start point of the line. A stop on a line is uniquely
determined by the line number and the stop name. But we also require the travel times to be unique, i.e. that
it takes at least one minute to travel from one stop to the next. (The start and the end points of a line are then
indirectly defined by the minimum and maximum travel times.)

The task is again to build an ER model, as well as a schema in the form of SQL CREATE TABLE statements. You should
build all of this separately from (1a). The schema should express all the relevant constraints that can be expressed in
SQL. Some of them might not be expressible in the ER model.

3

2. Dependencies (8p)

The following table shows a few connections from the public transport system of Gothenburg.

line vehicle model start point start city end point end city start time capacity

2 tram M28 AxelDs torg Göteborg Mölndal Mölndal 16:26 116

2 tram M31 AxelDs torg Göteborg Mölndal Mölndal 17:16 202

4 tram M31 Mölndal Mölndal Angered Göteborg 16:26 202

16 bus B9S Fyrktorget Göteborg Eketrägatan Göteborg 12:44 138

55 bus 7900 SvenHs plats Göteborg Lindholmen Göteborg 10:05 105

2a (5p)

You can find many redundancies in this table, and your task is to identify their causes and eliminate them. More
precisely:
• Show the functional dependencies that hold for this table (the basic ones; you can leave out derived ones).

– Start by following the definition of a functional dependency (in the ”standard cheat sheet”) and applying
it to the table.

– List all the dependencies found in this way (but you can safely leave out derived dependencies).
– This list will probably contain some bogus dependencies that cease to hold when you add more data, as

well as some real dependencies.
– Explain why you consider some dependencies bogus and leave them out, e.g. by giving examples of realistic

data that would destroy those dependencies.

2b (3p)

Using the real dependencies, perform a BCNF decomposition.
• Show the steps that you perform, including the schema that results.
• Show the resulting tables with the original data in them, now represented in a less redundant form.

4

3. SQL queries (12p)

Assume tables with the following schemas for public transport:

Stops (name, location)

Lines (number, vehicle)

StopsOnLines (line, stop, timeFromStart)

line -> Lines(number)

stop -> Stops(name)

(primary key information left out as irrelevant here).
The StopsOnLines table lists stops along each line, each with the total time it takes to reach them from the start

of the line. For instance: ”line 13 takes 5 minutes to Chalmers”, ”line 13 takes 21 minutes to Central Station”. Your
task is to write some SQL queries for such questions.

3a (3p)

Find all lines that stop at Chalmers, together with the vehicles they use. The result should look as follows:

line | vehicle

------+-----------

8 | tram

16 | bus

3b (4p)

Find all connections from Chalmers to Brunnsparken that require exactly one change (on a stop common to two lines).
The result should show the two lines involved, the stop where the change happens, and the total duration (ignoring
the waiting time at the change place). The connections should not be optimal, just possible. The result should look
as follows:

line | line | change | duration

------+------+----------------------+----------

8 | 2 | Marklandsgatan | 28

8 | 2 | Korsvägen | 13

3c (5p)

Classify stops into cities on the basis of their location. We assume just two cities: Gothenburg and Mölndal. The
locations are expressed by codes such as G123e4 and M36g89 where the first letter indicates the city. The query should
return all stops names in alphabetical order together with the city they are in. The result should look as follows:

stop | city

------------------------+------------

Almedal | Gothenburg

Krokslätts torg | Mölndal

Kungsportsplatsen | Gothenburg

5

4. Relational algebra and semantics (8p)

The following SQL query finds those stops names that exist in more than one different locations:

SELECT DISTINCT A.name

FROM Stops A, Stops B

WHERE A.name = B.name AND A.location <> B.location

Notice that the result will always be empty if the constraints in Question 1 are obeyed. However, in a larger setting we
may have to relax these constraints and permit the same stop names in different cities. For example, the Gothenburg
region has Almedal in both Gothenburg and Kungsbacka.

4a (2p)

Translate the above query to relational algebra.

4b (2p)

Trace the execution of this query by showing the number of rows and columns of each intermediate relation that is
formed if the query is executed without any optimizations. You can assume that there are 10,000 rows in Stops and
50 names in the end result.

4c (4p)

Show an alternative query that generates the same result but without forming any intermediate relations with more
than 10,000 rows. Show this query both in SQL (2p) and in relational algebra (2p).

6

5. Constraints and triggers (12p)

5a (2p)

In question 2, we showed a table with tram models M28 and M31, as well as bus models B9S and 7900. Write and
SQL CREATE TABLE definition for the schema (with key information intentionally left out—it is up to you to add any)

Vehicles (vehicletype, model, capacity)

adding constraints that guarantee that models M28 and M31 can only be trams, and models B9S and 7900 can only
be buses. The attribute vehicletype has values ’bus’, ’tram’, etc.

5b (3p)

In question 1b, we defined the stops along a line in terms of the absolute travel time from the start of the line. An
alternative description is to give them ordering numbers (1,2,3,...), and define the time (the number of minutes) it
takes to travel to each stop from the previous one. The schema of such a table is:

StopsAndIntervals (_line, _ordering,stop,timeFromPrevious)

A meaningful constraint for this schema is that the time from the previous stop is 0 if and only if the stop is the first
stop (stop number 1) on the line. Express this constraint in SQL.

5c (3p)

Create a view listing the times when different lines stop at different stops:

StopTimes(line,stop,time)

based on the tables
• StopsOnLines(line,stop,timeFromStart) that shows the number of minutes needed to reach each stop on

the line (from question 3)
• Runs(line,startTime) that lists all the runs of a line with the times they start, e.g. that line 4 starts at 17:10

(from its first stop)
You can use the + operator to add durations to times: e.g. 13:16 + 55 gives the result 14:11. (The syntax in
PostgreSQL is a bit more complicated, but in this question you are free to use this simplified syntax.)

5d (4p)

Write a trigger for scheduling stop times as defined in 5c. This trigger should interpret each addition to the view
StopTimes as an addition to the table Runs, creating an entry that starts just the exact time to reach the wanted stop
at the wanted time.

Note: such updates would enable the user to add transports freely, almost like calling a taxi. Certainly too generous
for a public transport system, but simple enough to use as an example of a trigger!

7

6. Remaining topics: XML (8p)

In this question, we will investigate the use of XML in both of its double purposes: data and documents. We build
a document structure that enables the display of complex routes in a transport system. An example is the following
route found from Västtrafik’s web service, when asking how to get from Almedal to Idala:

dep. 17:02 Almedal Göteborg tram 2
arr. 17:12 Mölndal Station Mölndal
dep. 17:23 Mölndal station Mölndal train 3069
arr. 17:41 Kungsbacka station Kungsbacka
dep. 17:47 Kungsbacka station Kungsbacka bus 744
arr. 18:14 Idala Kungsbacka

6a (5p)

Write a DTD that models routes like this, with the following properties
• a route is a sequence of alternating departures and arrivals
• the sequence can be of any length, but must start with a departure and end with an arrival
• each departure indicates a time, a station, a city, and a line
• each arrival indicates a time, a station, and a city (the line is not mentioned, since it is the same as in the

preceding departure)
Every piece of information in the table (stop,city,line,time) must be represented as a distinct element or attribute
value in the DTD.

6b (3p)

Write an XML element encoding the above route from Almedal to Idala. It must be valid according to your DTD.

8

Databases in a Nutshell (“Standard Cheatsheet”)

E-R diagrams and database schemas

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A1, . . . , An}. A relation
R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ⊆ S and t is a tuple of a relation with
signature S, we can form a simultaneous projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a
signature S. Then A is functionally dependent on X in the relation R, written X → A, if
• for all tuples t,u in R, if t.X = u.X then t.A = u.A.

If Y is a set of attributes, we write X → Y to mean that X → A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = X ∪Y ∪Z.
Then Y has a multivalued dependency on X in R, written X →→ Y , if
• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that

– v.X = t.X
– v.Y = t.Y

9

– v.Z = u.Z
Definition. An attribute A follows from a set of attributes Y, if there is an FD X → A such that X ⊆ Y .
Definition (closure of a set of attributes under FDs). The closure of a set of attributes X ⊆ S under a set FD of
functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X → A is trivial, if A ∈ X.
Definition (superkey, key). A set of attributes X ⊆ S is a superkey of S, if S ⊆ X+.
A set of attributes X ⊆ S is a key of S if
• X is a superkey of S
• no proper subset of X is a superkey of S

Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X → A violates BCNF if
• X is not a superkey
• the dependency is not trivial

A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency X → A violates 3NF if
• X is not a superkey
• the dependency is not trivial
• A is not prime

Definition (trivial multivalued dependency). A multivalued dependency X →→ A is trivial if Y ⊆ X or X ∪ Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X →→ A violates 4NF if
• X is not a superkey
• the MVD is not trivial.

Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.
R can be brought to BCNF by the following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X → A, decompose R to two relations

• R1 with signature X ∪ {A}
• R2 with signature S − {A}

3. Apply the above steps to R1 and R2 with functional dependencies projected to the attributes contained in each
of them.

Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.
R can be brought to 4NF by the following steps:

1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X →→ Y , decompose R to two relations

• R1 with signature X ∪ {Y }
• R2 with signature S − Y

3. Apply the above steps to R1 and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X → A means finding a
minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of functional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X → A are grouped together
• for each of the groups, return the schema XA1 . . . An with the common LHS and all the RHSs
• if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just

some key

10

Relational algebra

relation ::=

relname name of relation (can be used alone)

| σcondition relation selection (sigma) WHERE

| πprojection+ relation projection (pi) SELECT

| ρrelname (attribute+)? relation renaming (rho) AS

| γattribute*,aggregationexp+ relation

grouping (gamma) GROUP BY, HAVING

| τexpression+ relation sorting (tau) ORDER BY

| δ relation removing duplicates (delta) DISTINCT

| relation × relation cartesian product FROM, CROSS JOIN

| relation ∪ relation union UNION

| relation ∩ relation intersection INTERSECT

| relation − relation difference EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./condition relation theta join JOIN ON

| relation ./attribute+ relation INNER JOIN

| relation ./oattribute+ relation FULL OUTER JOIN

| relation ./oLattribute+ relation LEFT OUTER JOIN

| relation ./oRattribute+ relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression → attribute rename projected expression AS

aggregationexp ::=

aggregation(*|attribute) without renaming

| aggregation(*|attribute) → attribute with renaming AS

expression, condition, aggregation, attribute ::=

as in SQL, but excluding subqueries

11

SQL

statement ::= type ::=

CREATE TABLE tablename (CHAR (integer) | VARCHAR (integer) | TEXT

* attribute type inlineconstraint* | INT | FLOAT

* [CONSTRAINT name]? constraint deferrable?

) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY

DROP TABLE tablename ; | REFERENCES tablename (attribute) policy*

| | UNIQUE | NOT NULL

INSERT INTO tablename tableplaces? values ; | CHECK (condition)

| | DEFAULT value

DELETE FROM tablename

? WHERE condition ; constraint ::=

| PRIMARY KEY (attribute+)

UPDATE tablename | FOREIGN KEY (attribute+)

SET setting+ REFERENCES tablename (attribute+) policy*

? WHERE condition ; | UNIQUE (attribute+) | NOT NULL (attribute)

| | CHECK (condition)

query ;

| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL

AS (query) ; deferrable ::=

| NOT? DEFERRABLE (INITIALLY DEFERRED|IMMEDIATE)?

ALTER TABLE tablename tableplaces ::=

+ alteration ; (attribute+)

|

COPY tablename FROM filepath ; values ::=

postgresql-specific, tab-separated VALUES (value+) ## VALUES only in INSERT

| (query)

query ::=

SELECT DISTINCT? columns setting ::=

? FROM table+ attribute = value

? WHERE condition

? GROUP BY attribute+ alteration ::=

? HAVING condition ADD COLUMN attribute type inlineconstraint*

? ORDER BY attributeorder+ | DROP COLUMN attribute

|

query setoperation query localdef ::=

| WITH tablename AS (query)

query ORDER BY attributeorder+

no previous ORDER in query columns ::=

| * ## literal asterisk

WITH localdef+ query | column+

table ::= column ::=

tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name

| (query) AS? tablename

| table jointype JOIN table ON condition attributeorder ::=

| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?

| table NATURAL jointype JOIN table

setoperation ::=

condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared

| expression NOT? BETWEEN expression AND expression jointype ::=

| condition boolean condition LEFT|RIGHT|FULL OUTER?

| expression NOT? LIKE ’pattern*’ | INNER?

| expression NOT? IN values

| NOT? EXISTS (query) comparison ::=

| expression IS NOT? NULL = | < | > | <> | <= | >=

| NOT (condition)

12

compared ::=

expression ::= expression

attribute | ALL|ANY values

| tablename.attribute

| value operation ::=

| expression operation expression "+" | "-" | "*" | "/" | "%"

| aggregation (DISTINCT? *|attribute) | "||"

| (query)

pattern ::=

value ::= % | _ | character ## match any string/char

integer | float | string ## string in single quotes | [character*]

| value operation value | [^ character*]

| NULL

aggregation ::=

boolean ::= MAX | MIN | AVG | COUNT | SUM

AND | OR

triggers ## privileges

functiondefinition ::= statement ::=

CREATE FUNCTION functionname() RETURNS TRIGGER AS $$ GRANT privilege+ ON object TO user+ grantoption?

BEGIN | REVOKE privilege+ ON object FROM user+ CASCADE?

* triggerstatement | REVOKE GRANT OPTION FOR privilege

END ON object FROM user+ CASCADE?

$$ LANGUAGE ’plpgsql’ | GRANT rolename TO username adminoption?

;

privilege ::=

triggerdefinition ::= SELECT | INSERT | DELETE | UPDATE | REFERENCES

CREATE TRIGGER triggernane | ALL PRIVILEGES ## | ...

whentriggered

FOR EACH ROW|STATEMENT object ::=

? WHEN (condition) tablename (attribute+)+ | viewname (attribute+)+

EXECUTE PROCEDURE functionname | trigger ## | ...

;

user ::= username | rolename | PUBLIC

whentriggered ::=

BEFORE|AFTER events ON tablename grantoption ::= WITH GRANT OPTION

| INSTEAD OF events ON viewname

adminoption ::= WITH ADMIN OPTION

events ::= event | event OR events

event ::= INSERT | UPDATE | DELETE ## transactions

triggerstatement ::= statement ::=

IF (condition) THEN statement+ elsif* END IF ; START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

| RAISE EXCEPTION ’message’ ;

| statement ; ## INSERT, UPDATE or DELETE mode ::=

| RETURN NEW|OLD|NULL ; ISOLATION LEVEL level

| READ WRITE | READ ONLY

elsif ::= ELSIF (condition) THEN statement+

level ::=

SERIALIZABLE | REPEATABLE READ | READ COMMITTED

| READ UNCOMMITTED

indexes

statement ::=

CREATE INDEX indexname ON tablename (attribute+)?

13

XML

document ::= header? dtd? element

starttag ::= < ident attr* >

header ::= "<?xml version=1.0 encoding=utf-8 standalone=no?>" endtag ::= </ ident >

standalone=no if with DTD emptytag ::= < ident attr* />

dtd ::= <! DOCTYPE ident [definition*]> attr ::= ident = string ## string in double quotes

definition ::= ## XPath

<! ELEMENT ident rhs >

| <! ATTLIST ident attribute* > path ::=

axis item cond? path?

rhs ::= | path "|" path

EMPTY | #PCDATA | ident

| rhs"*" | rhs"+" | rhs"?" axis ::= / | //

| rhs , rhs

| rhs "|" rhs item ::= "@"? (ident*) | ident :: ident

attribute ::= ident type #REQUIRED|#IMPLIED cond ::= [exp op exp] | [integer]

type ::= CDATA | ID | IDREF exp ::= "@"? ident | integer | string

element ::= starttag element* endtag | emptytag op ::= = | != | < | > | <= | >=

Grammar conventions

• CAPITAL words are SQL or XML keywords, to take literally
• small character words are names of syntactic categories, defined each in their own rules
• | separates alternatives
• + means one or more, separated by commas in SQL, by white space in XML
• * means zero or more, separated by commas in SQL, by white space in XML
• ? means zero or one
• in the beginning of a line, + * ? operate on the whole line; elsewhere, they operate on the word just before
• ## start comments, which explain unexpected notation or behaviour
• text in double quotes means literal code, e.g. "*" means the operator *
• other symbols, e.g. parentheses, also mean literal code (quotes are used only in some cases, to separate code

from grammar notation)
• parentheses can be added to disambiguate the scopes of operators, in both SQL and XML

14

