## CHALMERS - GÖTEBORGS UNIVERSITET

## CRYPTOGRAPHY

## TDA352 (Chalmers) - DIT250 (GU)

12 Jan. 2017, 14:00-18:00

No extra material is allowed during the exam except for pens and a simple calculator (not smartphones). No other electronic devices allowed. Your answers in the exam must be written in English. Your language skills will not be graded (but of course we cannot grade your answer if we do not understand it), so try to give clear answers. Your thoughts and ways of reasoning must be clearly understood!

Teacher: Elena Pagnin
Examiner: Aikaterini Mitrokotsa
Questions during the exam: Elena Pagnin (phone 072 9681552)
Inspection of exam: See web page for announcement.

The exam has 4 topics and some bonus questions to gain extra points. The total number of points is 100 points ( +8 bonus points).
Grades are :
CTH Grades: $\quad 50-64 \rightarrow 3, \quad 65-89 \rightarrow 4, \quad 90$ or above $\rightarrow 5$
GU Grades: $\quad 50-89 \rightarrow \mathrm{G}, \quad 90$ or above $\rightarrow \mathrm{VG}$

## Good luck!

## Symmetric Ciphers (20p)

1. Consider the message $m=$ HKPUFCMHY BHDDXZH, and let (E,D) be a substitution cipher.
(a) Decrypt $m$ using the following (secret) substitution key:
(b) Can this cipher be broken by someone who has access to $m$ but not to the secret key? Why?
2. Let $(\mathbf{E}, \mathbf{D})$ be a (one-time) semantically secure cipher, where the messages, ciphertexts and keys are binary strings, e.g., you can think $\mathcal{M}=\mathcal{C}=\mathcal{K}=\{0,1\}^{n}$, with $n \geq 2$. Are the following encryption schemes, derived from (E, D), semantically secure or not? Explain why (no need for formal proofs, but your motivations should be well-justified).
Why do we require $n \geq 2$ ? Would $n=1$ provide different answers? (1 bonus point)
(a) $\mathbf{E}^{\prime}(k, m)=\mathbf{E}(k, m) \oplus \mathbf{1}$, where $\mathbf{1}$ denotes the string with all ones.
(b) $\mathbf{E}^{\prime}(k, m)=\mathbf{E}(k, m) \| R B(m)$, where $R B(m)$ gives back a random bit of the input $m$.
(c) $\mathbf{E}^{\prime}(k, m)=\mathbf{E}(k, m) \| R B(k)$, where $R B(k)$ gives back a random bit of the input $k$.
3. Does the OTP (One Time Pad) cipher achieve perfect secrecy? Prove it.
(Hint: you can start by quickly describing how the OTP cipher works and how perfect secrecy is defined).

## Public Key Encryption (30p)

4. Describe the ElGamal encryption scheme.
(Hint: write down input, output and behaviour of the algorithms).
5. Define the IND-CCA security game (indistinguishability chosen ciphertext attack) and show that the ElGamal encryption scheme is not secure under IND-CCA. (11p)
6. Consider the cyclic group $\mathbb{Z}_{37}^{*}$. If you explain in details the functions / theorems / theory involved in this exercise you can gain a maximum of (3 bonus points)
(a) How many elements are in $\mathbb{Z}_{37}^{*}$, i.e., what is the order of the group?
(b) Is $\mathbb{Z}_{37}^{*}$ a cyclic group? How many generators does it have?
(c) Is 4 a generator of $\mathbb{Z}_{37}^{*}$ ? Prove it.

## Data Integrity (20p)

7. Describe the RSA digital signature scheme.
(Hint: write down input, output and behaviour of the algorithms).
8. Let $N>2$ be a positive integer. Consider the function $h: \mathbb{Z} \longrightarrow \mathbb{Z}_{N}$, defined as $h(m)=m \bmod N$. To check if $h$ is a cryptographic hash function we need to assure that $h$ satisfies (at least) the following three properties:
(2a) Given a message $m$, the message digest $y=h(m)$ can be computed in an efficient way.
(2b) Given a message digest $y$, it is computationally infeasible to find an $m$ with $h(m)=y$ (in other words, $h$ is a one-way, or pre-image resistant function).
(2c) It is computationally infeasible to find two dinstint messages $m_{1}, m_{2} \in \mathbb{Z}$ such that $h\left(m_{1}\right)=h\left(m_{2}\right)$ (in this case, the function $h$ is said to be collision-free).

Check if $h$ is a cryptographic hash function, i.e., for each of the properties ((8a), (8b) and (8c)) show if $h$ satisfies it or not.
(10p)

## Advanced Topics in Cryptography (30p)

9. Describe in your own words (or give the definition of):
(a) Unconditional and provable security. Also, give at least one example of a cryptosystem in each category.
(6p)
(b) The three main properties of the Fiat-Shamir identification protocol (Completeness, Soundness and Zero-Knowledge).
(8p)
10. Consider the Secure Multiparty Computation (SMPC) protocol for addition, based on the Shamir Secret Sharing Scheme, seen in class. Assume that there are $n=4$ parties $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$, that the system tolerates $t=3$ corrupted parties, and that all computations are done in $\mathbb{Z}_{13}$.
(a) Imagine you are $P_{1}$, and your secret input to the computation is $a=5$. Explain how you would share your secret value $a$ with the other parties and what you expect to receive from each other party (note that no explicit computation is required for this step, just a formal description of how the scheme works). (4p)
(b) Now, imagine you are $P_{1}$ and hold the table below (which corresponds to your view of the protocol). Compute the value $S=a+b+c+d$ using the information contained in the table.
(12p)

|  | $P_{1}$ | $P_{2}$ | $P_{3}$ | $P_{4}$ |
| ---: | :---: | :---: | :---: | :---: |
| $a=5$ | $a_{1}=5$ | $a_{2}=12$ | $a_{3}=7$ | $a_{4}=10$ |
| $b=?$ | $b_{1}=4$ | $?$ | $?$ | $?$ |
| $c=?$ | $c_{1}=12$ | $?$ | $?$ | $?$ |
| $d=?$ | $d_{1}=9$ | $?$ | $?$ | $?$ |
| $S$ | $s_{1}=4$ | $s_{2}=6$ | $s_{3}=1$ | $s_{4}=7$ |

(c) Bonus question: Looking at the table in point (10b), are you able to determine what was the polynomial $f$ chosen by $P_{1}$ to share a? Why? Compute the polynomial $f$, if possible.
(4 bonus points)

