CHALMERS — GÖTEBORGS UNIVERSITET

CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

12 Jan. 2017, 14:00 - 18:00

No extra material is allowed during the exam except for pens and a simple calculator (not smartphones). *No other electronic devices allowed.* Your answers in the exam must be written in *English.* Your language skills will not be graded (but of course we cannot grade your answer if we do not understand it), so try to give *clear answers.* Your thoughts and ways of reasoning must be clearly understood!

Teacher: Elena Pagnin Examiner: Aikaterini Mitrokotsa Questions during the exam: Elena Pagnin (phone 072 9681552) Inspection of exam: See web page for announcement.

The exam has 4 topics and some bonus questions to gain extra points. The total number of points is 100 points (+ 8 bonus points). Grades are : CTH Grades: $50-64 \rightarrow 3$, $65-89 \rightarrow 4$, 90 or above $\rightarrow 5$ GU Grades: $50-89 \rightarrow G$, 90 or above $\rightarrow VG$

Good luck!

Symmetric Ciphers (20p)

- 1. Consider the message m = HKPUFCMHY BHDDXZH, and let (\mathbf{E}, \mathbf{D}) be a substitution cipher.
 - (a) Decrypt m using the following (secret) substitution key: (2p)

plain							-			-						-	-								-	
cipher	X	G	Ρ	Y	Η	Q	Ζ	Ι	R	А	J	S	В	Κ	Т	С	L	U	D	М	V	Е	N	W	F	0

- (b) Can this cipher be broken by someone who has access to *m* but not to the secret key? Why? (3p)
- 2. Let (\mathbf{E}, \mathbf{D}) be a (one-time) semantically secure cipher, where the messages, ciphertexts and keys are binary strings, e.g., you can think $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$, with $n \geq 2$. Are the following encryption schemes, derived from (\mathbf{E}, \mathbf{D}) , semantically secure or not? Explain why (no need for formal proofs, but your motivations should be well-justified).

Why do we require $n \ge 2$? Would n = 1 provide different answers? (1 bonus point)

- (a) $\mathbf{E}'(k,m) = \mathbf{E}(k,m) \oplus \mathbf{1}$, where **1** denotes the string with all ones. (2p)
- (b) $\mathbf{E}'(k,m) = \mathbf{E}(k,m)||RB(m)$, where RB(m) gives back a random bit of the input m. (2p)
- (c) $\mathbf{E}'(k,m) = \mathbf{E}(k,m) ||RB(k)|$, where RB(k) gives back a random bit of the input k. (2p)
- 3. Does the OTP (One Time Pad) cipher achieve perfect secrecy? Prove it. (9p) (Hint: you can start by quickly describing how the OTP cipher works and how perfect secrecy is defined).

Public Key Encryption (30p)

- 4. Describe the ElGamal encryption scheme. (6p) (Hint: write down input, output and behaviour of the algorithms).
- 5. Define the IND-CCA security game (indistinguishability chosen ciphertext attack) and show that the ElGamal encryption scheme is not secure under IND-CCA. (11p)
- 6. Consider the cyclic group \mathbb{Z}_{37}^* . If you explain in details the functions / theorems / theory involved in this exercise you can gain a maximum of (3 bonus points)
 - (a) How many elements are in \mathbb{Z}_{37}^* , i.e., what is the order of the group? (2p)
 - (b) Is \mathbb{Z}_{37}^* a cyclic group? How many generators does it have? (4p)
 - (c) Is 4 a generator of \mathbb{Z}_{37}^* ? Prove it. (7p)

Data Integrity (20p)

- 7. Describe the RSA digital signature scheme. (10p) (Hint: write down input, output and behaviour of the algorithms).
- 8. Let N > 2 be a positive integer. Consider the function $h : \mathbb{Z} \longrightarrow \mathbb{Z}_N$, defined as $h(m) = m \mod N$. To check if h is a cryptographic hash function we need to assure that h satisfies (at least) the following three properties:
 - (2a) Given a message m, the message digest y = h(m) can be computed in an efficient way.
 - (2b) Given a message digest y, it is computationally infeasible to find an m with h(m) = y (in other words, h is a one-way, or pre-image resistant function).
 - (2c) It is computationally infeasible to find two dinstint messages $m_1, m_2 \in \mathbb{Z}$ such that $h(m_1) = h(m_2)$ (in this case, the function h is said to be collision-free).

Check if h is a cryptographic hash function, i.e., for each of the properties ((8a), (8b) and (8c)) show if h satisfies it or not. (10p)

Advanced Topics in Cryptography (30p)

- 9. Describe in your own words (or give the definition of):
 - (a) Unconditional and provable security. Also, give at least one example of a cryptosystem in each category. (6p)
 - (b) The three main properties of the Fiat-Shamir identification protocol (Completeness, Soundness and Zero-Knowledge). (8p)
- 10. Consider the Secure Multiparty Computation (SMPC) protocol for addition, based on the Shamir Secret Sharing Scheme, seen in class. Assume that there are n = 4parties (P_1, P_2, P_3, P_4) , that the system tolerates t = 3 corrupted parties, and that all computations are done in \mathbb{Z}_{13} .
 - (a) Imagine you are P_1 , and your secret input to the computation is a = 5. Explain how you would share your secret value a with the other parties and what you expect to receive from each other party (note that no explicit computation is required for this step, just a formal description of how the scheme works). (4p)
 - (b) Now, imagine you are P_1 and hold the table below (which corresponds to your view of the protocol). Compute the value S = a+b+c+d using the information contained in the table. (12p)

	P_1	P_2	P_3	P_4
a = 5	$a_1 = 5$	$a_2 = 12$	$a_3 = 7$	$a_4 = 10$
b = ?	$b_1 = 4$?	?	?
c = ?	$c_1 = 12$?	?	?
d = ?	$d_1 = 9$?	?	?
S	$s_1 = 4$	$s_2 = 6$	$s_3 = 1$	$s_4 = 7$

(c) Bonus question: Looking at the table in point (10b), are you able to determine what was the polynomial f chosen by P₁ to share a? Why? Compute the polynomial f, if possible.
(4 bonus points)