
CHALMERS TEKNISKA HÖGSKOLA
Datavetenskap
Daniel Hedin DIT250/TDA351

Exam in Cryptography

Tuesday, December 17, 2013, 14.00 – 18.00.
Teacher: Daniel Hedin, phone 0709 261771.
Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas
efter godkännande av kursansvarig vid dennes besök i skrivsalen.
Allowed aids: Approved calculator. Other calculators with cleared memory may be
used after approval by the responsible teacher.
The exam has 7 problems with a total of 50 points. 22/31/40 points are needed for
grade 3/4/5.
Answers must be given in English and should be clearly justified.

Hash functions (7 p)

1. Explain what a cryptographic hash function is and the notion of collision resis-
tance. (3 p)

2. Explain the birthday problem and how it affects collision resistance. (4 p)

Public key (10 p)

1. Textbook RSA is multiplicatively homomorphic, i.e.,

RSApk(m1) ·RSApk(m2) = RSApk(m1 ·m2) (1)

Define how RSA encryption is done, and show that RSA is multiplicatively ho-
momorphic, i.e., that equation 1 holds. (3 p)

2. Explain how textbook RSA can be used for digital signatures, i.e., explain how
to sign and how to verify the signature. (3 p)

3. Signatures based only on textbook RSA are not secure due to RSA being mul-
tiplicatively homomorphic. Show an existential forgery attack on textbook RSA
signatures, i.e., given messages, mi, and the corresponding signatures, σi, show
how to construct a new message m and a corresponding valid signature σ without
having access to the key. (2 p)

4. How can we change the way we produce RSA signatures to protect against the
above existential forgery attack? Give the construction and show that the attack
no longer works. (2 p)
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Block Ciphers (9 p)

1. We have argued that the construction of block ciphers is guided by the notions
of diffusion and confusion. Explain the notions and how they relate to plain text
recovery and key recovery attacks. (2 p)

2. As you remember, a Feistel network is a common way of constructing block
ciphers described by

Li+1 = Ri
Ri+1 = Li⊕ f (Ri,Ki)

What properties do we expect the round function f to have? In particular, does f
have to be invertible? Justify your answers. (3 p)

3. DES is an old block cipher that should no longer be used primarily due to its
small key size of 56 bit, which makes brute force attacks possible. We have seen
that the key size for DES can be increased by repeated encryption under different
keys. For instance, 3DES uses two keys and three operations to achieve 112 bits
of security as follows

3DESk1,k2(m) = Ek1(Dk2(Ek1(m)))

where Ek is DES encryption using key k and Dk is DES decryption using key k.

A similar construction 2DES, does not achieve 112 bits of security, due to the
meet-in-the-middle attack.

2DESk1,k2(m) = Ek1(Ek2(m))

Explain how the meet-in-the-middle attack works and what security level 2DES
achieves, i.e., how many steps of computation the adversary has to do for the
attack. (4 p)
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Protocols (7 p) the ISO 9798-2 protocol

Recall the ISO 9798-2 protocol:

1. A→ B : A,NA
2. B→ A : {A,NA,NB}KAB

3. A→ B : {NB,NA}KAB

1. What does ISO 9798-2 achieve? Give a detailed explanation of why it achieves
this. (3 p)

2. Assume that we want to realize {·}KAB using a block cipher and that the size of
each part of the message A, NA, and NB is equal to the block size. What block
cipher mode could be used for the encryption? (2 p)

3. Consider the following change to the third message of the protocol.

3. A→ B : {NA,NB}KAB

Are you still able to securely use the mode you suggested above? You must
explain your answer; a simple yes or no answer does not suffice. (2 p)

Protocols (5 p) the Schnorr protocol

Setting: Group of prime order q with generator g. P has private key x and public key
X = gx.

• P generates random r ∈ Zq, computes R = gr and sends R to V.

• V generates random c ∈ Zq and sends it to P.

• P computes z = c · x+ r and sends it to V.

After this sequence of messages V checks if gz = R ·Xc.

1. Justify why this protocol works. (2 p)

2. Show that if an eavesdropper is able to get two runs of the protocol that are using
the same commitment r the eavesdropper can compute the secret x, i.e., show
how to compute x from (R,c1,z1) and (R,c2,z2). (3 p)
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Random numbers (5 p)

1. Justify why block ciphers, MACs and cryptographic hash functions can be used
to generate random numbers. (2 p)

2. Show how you can use the counter mode (CTR) to create a pseudo random num-
ber generator prng(x), where x is the seed. What is the period for your generator,
i.e., how many bits can it output before repeating? (3 p)

Security notions. (7 p) We recall the notion of indistinguishability under chosen
plaintext, IND-CPA. Let (K ,E,D) be a public key system with key generation algo-
rithm K , encryption aglorithm E and decryption algorithm D all known by the adver-
sary. We say that the public key system satisfies IND-CPA if the attacker has negligible
probability of winning the following game.

IND-CPA :
(pk,sk)←K ()
m0,m1← A1(pk)

b $←{0,1}
c← E(pk,mb)
b′← A2(pk,c)

The game is read as follows:

• We generate fresh keys.

• The adversary is allowed to chose messages freely and encrypt them using the
public key. Once he is finished he selects two plaintexts.

• We throw a fair coin and depending on the outcome encrypt one of the plaintexts
selected by the adversary, and give the adversary the resulting ciphertext.

• To win the adversary should decide which of the plaintexts we encrypted.

1. Give an explanation for why this is a good security notion. (2 p)

2. Show that no deterministic cipher can satisfy IND-CPA, i.e., assuming that E is
deterministic, create an adversary A = (A1,A2) that has non-negligible probabil-
ity to win the game. (4 p)

3. What is the probability that your adversary wins? (1 p)
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