
CHALMERS TEKNISKA HÖGSKOLA
Datavetenskap
Daniel Hedin DIT250/TDA351

Solutions to exam in Cryptography December 17, 2013

Hash functions

1. A cryptographic hash function is a deterministic function that takes a long message m and
computes a fixed size hash value v. Typically |m|>> |v| and |v| is in the range 128−1024 bits.
In addition, a cryptographic hash function should be one-way and collision resistant.

Being one-way entails that it should be easy to compute the hash value for a given message,
while it should be computationally infeasible to find a message that has a given hash value.

Being collision resistant entails that it should be computationally infeasible to find two messages
m1 and m2 with the same hash value, H(m1) = H(m2).

2. The birthday problem refers to the question of how many people, when selected uniformly at
random, is needed before you can expect two to share birthday. In general, if one considers n
possible outcomes instead of 365 possible birthdays the number of uniform samples needed can
be safely (under) approximated by

√
n.

For a cryptographic hash function this means that if the size of the hash value is k bits (n =
2k possible different hash values) we can only hash

√
2k = 2k/2 randomly selected messages

before we expect one collision. This means that the birthday problem gives us an attack against
collision resistance in 2k/2 steps.

Public key

1. For N = p ·q, where p and q are large primes select e such that gcd(e,Φ(N)) = 1. The public
key for RSA is the pair (N,e) and encryption is performed by

RSA(N,e)(m) = me mod N

To show that RSA is multiplicatively homomorphic it suffices to show

RSA(N,e)(m1) ·RSA(N,e)(m2) = me
1 mod N ·me

2 mod N =
me

1 ·me
2 mod N = (m1 ·m2)

e mod N =
RSA(N,e)(m1 ·m2)

2. The secret key of RSA consists of (p,q,d) where d is the multiplicative inverse of e in Z∗
Φ(N).

Signing using RSA can be performed by decrypting the message to be signed using the secret
key, i.e.,

1

σ = sign(p,q,d)(m) = md

The corresponding verification is then performed by encrypting the signature with the public
key. The result of this step is the message.

veri f y(N,e)(σ,m) = σ
e ?
= m

Anyone in possession of the public key can verify the signature, and the signature can only be
created by someone in possession of the secret key.

3. Assume two message-signature pairs (m1,σ1) and (m2,σ2). A new pair can be constructed
by pointwise multiplication of the pairs, i.e., (m1 ·m2,σ1 ·σ2). The justification is identical to
problem 1 above.

4. We can protect against this existential forgery attack by signing, e.g., the hash value of the
message. Let H be a hash function

sign(p,q,d)(m) = H(m)d

veri f y(N,e)(σ,m) = σe ?
= H(m)

The verification function must the be changed accordingly to check that the signature ’encrypts’
to the hash value of the message m. The attack no longer works since with overwhelming
probability it holds that

H(m1) ·H(m2) 6= H(m1 ·m2)

and thus

sign(p,q,d)(m1) · sign(p,q,d)(m2) = H(m1)
d mod N ·H(m2)

d mod N =
H(m1)

d ·H(m2)
d mod N = (H(m1) ·H(m2))

d mod N 6=
H(m1 ·m2)

d mod N = sign(p,q,d)(H(m1 ·m2))

Block ciphers

1. diffusion The idea of diffusion is to spread statistical properties of the plaintext over the ci-
phertext to decouple the statistics of the ciphertext and the statistics of plaintext, which makes
it harder to recover the plaintext from the cipher text using statistical attacks like n-gram fre-
quencies.

confusion The idea with confusion is to decouple the ciphertext and the key making it harder
to recover information about the key from the ciphertext.

2. The design of f is at the core of the security of a Feistel network. One important property we
expect from f is that it should be non-linear, since the rest of the Feistel network is entirely
linear. If f is linear, this opens up for powerful attacks like linear cryptanalysis.

2

We do not have to demand that f is invertible, since the result of f xored with the left part of the
Feistel network state, Li. To decrypt this xor has to be inverted which is done using the output
of f , since x⊕ y⊕ y = x, i.e.

Li = Ri+1⊕ f (Ri,Ki)

3. The meet-in-the-middle attack for 2DES is a known plaintext attack that relies on the possibility
to decouple the keys in the following way

c = Ek1(Ek2(m))⇐⇒ Dk1(c) = Ek2(m)

In the right formulation there is only one key used on each side of the equality, which opens up
for tabulation, given known plaintext-ciphertext pairs (m,c). The attacker proceeds by tabulat-
ing Dk(c) for all possible k, storing the results (Dk(c),k) in such a way that lookup based on
Dk(c) is O(1). For DES this requires O(256) computation steps and storage. Thereafter the at-
tacker starts computing Ek(m) until a k′ is found such that Ek′(m) = Dk(c). The corresponding k
can be found in the table built in the previous step. The key pair (k,k′) is a candidate key pair (it
does not have to be unique). The set of candidate key pairs can then be reduced by considering
more plaintext-ciphertext pairs.

For DES, finding all candidate keys for a plaintext-ciphertext pair requires O(256 + 256) =
O(257) operations, and it suffices to repeat the process with with two plaintext-ciphertext pairs
yielding an attack that runs in O(258) steps.

Protocols - the ISO 9798-2 protocol

1. The ISO 9798-2 protocol achieves mutual authentication based on the shared knowledge of key
KAB. In the first step of the protocol A sends a message to B that can be interpreted as

A→ B : ”Hi, I’m A, please authenticate using nonce NA

In the second messge B responds with

B→ A : ”Hi, A, in response to the authentication request with nonce NA I respond
authenticating using KAB. In addition, please authenticate using nonce NB.

There are three fundamental details that ensure the authentication of B to A in the first two steps.

• The inclusion of the nonce NA in the reply prevents replay attacks, and

• the inclusion of the name A in the reply prevents refection attacks. Together they guarantee
to A that the received response is a response to his authentication request and not a replay
or reflection.

• This together with the fact that the response was encrypted with the key, KAB, that A and
B share, allows A to conclude that B created the response.

3

Finally, A replies

A→ B : ”Hi, in response to the authentication request with nonce NB, tied to the authentication
request with nonce NA I authenticate using KAB.

At this point B can conclude that A created the reply and mutual authentication is achieved.

2. One possibility is to use cipher block chaining, CBC, with random IV. The encryption of the
second message would then be

2.B→ A : C0,C1,C2,C3 = IV,EKAB(A⊕C0),EKAB(NA⊕C1),EKAB(NB⊕C2)

This works since the nonces in the third message are swapped, which prevents the third message
from being constructed from the second.

3.A→ B : C0,C1,C2 = IV,EKAB(NB⊕C0),EKAB(NA⊕C1)

Another possibility is to use counter mode, CTR, with random nonce N.

2.B→ A : C0,C1,C2,C3 = N,A⊕EKAB(N⊕0),NA⊕EKAB(N⊕1),NB⊕EKAB(N⊕2)

Again, the third message cannot be constructed from the second.

3.A→ B : C0,C1,C2 = N,NB⊕EKAB(N⊕0),NA⊕EKAB(N⊕1)

It is not possible to use ECB, since the third message

3.A→ B : C1,C2 = EKAB(NB),EKAB(NA)

is easily constructed from the second message

2.A→ B : C1,C2,C3 = EKAB(A),EKAB(NA),EKAB(NB)

3. Assuming we selected CBC in the previous question the answer is no. If the nonces are not
swapped it is easy to construct the third message from the second message by dropping the C0
(the IV). This will cause C1 to be interpreted as the new IV and decryption can proceed without
problems since for

2.B→ A : C0,C1,C2,C3 = IV,EKAB(A⊕C0),EKAB(NA⊕C1),EKAB(NB⊕C2)

C1,C2,C3 is {NA,NB}KAB using CBC with C1 as IV, and we have that decryption of C1,C2,C3
yields NA,NB.

Assuming we selected CTR mode in the previous question the answer is yes. From

4

2.B→ A : C0,C1,C2,C3 = N,A⊕EKAB(N⊕0),NA⊕EKAB(N⊕1),NB⊕EKAB(N⊕2)

it is still not possible to construct

3.A→ B : C0,C1,C2 = N,NA⊕EKAB(N⊕0),NB⊕EKAB(N⊕1)

since in the second message NA, and NB were encrypted using a counter value of 1 and 2, and
in the third message they are encrypted with 0 and 1 respectively.

Protocols - the Schnorr protocol

1. If both parties are honest we have that

gz = gc·x+r = gc·x ·gr = gxc ·gr = Xc ·R = R ·Xc

2. We have that z1− z2 = c1 ·x+ r− (c2 ·x+ r) = c1 ·x−c2 ·x = (c1−c2) ·x. We also have c1 and
c2, and thus, we can compute x as follows

x = (z1− z2)/(c1− c2)

All computations are done modulo q, for q prime, which guarantees the existense of multiplica-
tive inverses.

Random numbers

1. We have argued that block ciphers, MACs and cryptographic hash functions should be com-
putationally indistinguishable from their ideal variants. The ideal block cipher is a family of
random permutations indexed by key, the ideal MAC is a family of random functions indexed
by keys, and the ideal cryptographic hash function is a random function. Thus, the output of
any of those should be essentially random.

2. Counter mode is performed as follows

keys EK(N⊕0) EK(N⊕1) EK(N⊕2) EK(N⊕3) ...
⊕ ⊕ ⊕ ⊕ ...

plaintexts M0 M1 M2 M3 ...
ciphertexts N C0 C1 C2 C3 ...

Thus, this is essentially a stream cipher using EK(N⊕0),EK(N⊕1),EK(N⊕2),EK(N⊕3), ... as
keystream. This sequence is a good way to generate random runmbers. Since a block cipher is
a permutation (for a given key) the stream will repat when the input to the block cipher repeats,
which occurs when the counter wraps. Using the schema above where the counter is xored with
a random nonce, this occurs after 2k encryptions, where k is the block size. In general it occurs
after n steps where n is the number of values the counter can assume before repeating.

5

Security notions

1. If the adversary had any way of extracting a non-negligible amount of information about the
plaintext from the ciphertext, the adversary would have a way to win this game with non-
negligible probability. Thus, if the adversary cannot with this game with non-negligible prob-
ability then he cannot learn more than non-negligible information about the plaintext from the
ciphertext.

2. The first adversary generates two messages uniformly at random

A1(pk) = m0←{0,1}n; m1←{0,1}n; return (m0,m1)

The important thing is that they are not equal. Given a large message space {0,1}n this is
unlikely. In principle he could test for this and regenerate if needed.

In the second phase the adversary makes use of the fact that the encryption function is deter-
ministic and thus preserves equality, i.e., m1 = m2⇐⇒ Epk(c1) = Epk(c2)

A2(c) = c0← Epk(m0); return (c0 == c)

3. Since the encryption function preserves equality and there are only two possible choices —
either c == Epk(m0) or c == Epk(m1) — the above adversary wins with probability 1.

6

