
CHALMERS TEKNISKA HÖGSKOLA
Datavetenskap
Björn von Sydow DIT250/TDA351

Exam in Cryptography

Thursday December 20, 2012, 14.00 – 18.00.
Teacher: Björn von Sydow, phone 0722 39 14 01.
Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas
efter godkännande av kursansvarig vid dennes besök i skrivsalen.
Allowed aids: Approved calculator. Other calculators with cleared memory may be
used after approval by the responsible teacher.
The exam has 7 problems with a total of 50 points. 22/31/40 points are needed for
grade 3/4/5.
Answers must be given in English and should be clearly justified.

1. Explain briefly similarities and differences between cryptographic hash functions
and message authentication codes (MAC’s). (3 p)

2. We recall the two modes of operation CBC and CTR for a block cipher E:

CBC CTR
C0 = IV C0 = IV
Ci = EK(Mi⊕Ci−1) Ci = Mi⊕EK(IV ||i)

(a) Describe for both modes how decryption is done. (2 p)

(b) Alice wants to send encrypted messages to Bob, with whom she shares an
AES key, but her encryption software runs on a computer which she ac-
cesses over a local but insecure network. She therefore decides to blind
her messages on her computer, by randomly choosing a block N and xoring
every block of her message with N, before sending it for encryption.1 How-
ever, she also wants to unblind the encrypted message that she gets back,
before sending it to Bob, so that Bob need not be aware of the blinding and
can just decrypt it in the standard way.
Encryption can be done in either CBC or CTR mode. Help Alice to choose
one of the two modes and explain to her how to do the unblinding. (3 p)

(c) The system described above works well, but Alice now considers improving
her blinding scheme, as follows:

M′1 = M1⊕N
M′i = Mi⊕M′i−1, i > 1.

The blinded message is M′1M′2 . . .. Alice’s reasoning is that each message
block will now be xor-ed not only with N, but also with all previous message
blocks, and thus make unblinding without knowing N more difficult. Do
you agree? (2 p)

1Note: This is not a recommended practice, but a dubious procedure cooked up just for this exam.
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3. Alice regularly gets contracts, prepared by her business contacts, to sign digi-
tally. Her practice is to always add a space somewhere in the contract, before
hashing and signing. She then returns the slightly modified contract along with
her signature.

Explain why this practice of modifying the received contract is a good idea. (4 p)

4. We consider stream ciphers, where a plaintext m is encrypted by bitwise xor-ing
with an equally long keystream k, i.e. c = m⊕ k. Different ways of generating
the keystream can give ciphers with very different properties. Discuss briefly
advantages and disadvantages of the ciphers resulting from the following two
choices.

(a) k is a bitstring, which is generated from a truly random source and used for
only one encryption. (3 p)

(b) k is generated by a linear feedback shift register (an LFSR), of size 40 bits,
initialized with a 40 bit secret key, which is used for an extended period of
time. (3 p)

5. We consider the following scheme for signcryption, i.e. combined encryption
and signing of a message.

The setting is a cyclic group G of prime order q with generator g. Each user
has a private key x ∈ Zq and a public key X = gx. The system also uses a hash
function H and a secret key encryption method E; EK denotes encryption and DK
decryption with key K.

Assume that Alice has private key xA and public key XA and that Bob similarly
has keys xB and XB. To encrypt and sign message m for Bob, Alice does the
following:

• Choose a random integer z < q.

• Compute K = X z
B.

• Compute c = EK(m).

• Compute r = H(m||XA||XB||K).

• If r + xA = 0 ∈ Zq then start again, choosing a new z, otherwise compute
s = z · (r+ xA)

−1 ∈ Z∗q.

• The signcrypted message is (c,r,s).

On receipt of (c,r,s), Bob does the following:

• Compute K = (XA ·gr)s·xB .

• Compute m = DK(c).

• If H(m||XA||XB||K) = r, then m is accepted as the message signed by Alice;
otherwise the message is rejected.

Motivate in detail why a correctly signcrypted message by Alice will be correctly
decrypted and verified by Bob. (6 p)
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6. Tsudik and Herreweghen proposed the following protocol in which A and B use
a MAC algorithm, and a long-term shared key KAB for this MAC, to agree on a
session key KS:

1. A→ B : A,NA
2. B→ A : NB,MACKAB(NA||NB||B)⊕KS

Here NA and NB are nonces chosen by A and B respectively.

(a) How does A compute the session key? (2 p)

(b) Explain for both A and B why they believe after a run that the session key
KS is fresh, i.e. that they are not subject to a replay attack which establishes
some old session key. (2 p)

(c) Naive Ned argues that since B chooses a new random key KS in message 2,
his nonce NB is not necessary and the protocol could be simplified to

1. A→ B : A,NA
2. B→ A : MACKAB(NA||B)⊕KS

Show that Ned is wrong by demonstrating how an adversary, who records a
run of this simplified protocol and also gets hold of the session key for this
run, can later agree on keys with Bob at will. (3 p)

(d) The protocol in (a) has the disadvantage that the key is chosen by B alone.
In general, it is preferable to use a trusted third party for key selection. Give
two reasons why this is better. (2 p)

(e) Another option is to allow both parties to contribute to the common session
key. Describe the basic Diffie-Hellman protocol, which uses this policy.
What is the main weakness with this protocol? (4 p)

7. In this problem we consider Manger’s attack on RSA encryption. Assume an
RSA user, who uses a modulus N(= p ·q) of length 1024 bits = 128 bytes, with
public key e and private key d.

The user employs an unspecified padding system, where a plaintext m to be en-
crypted must be much shorter than 128 bytes, say 50 bytes long, and is padded
to a bitstring mp of length 128 bytes, which is then seen as integer in Z∗N and
encrypted with textbook RSA to give ciphertext c = me

p. Before encryption, one
should check that mp < N. A cheap way to guarantee this is to require that the
most significant byte (i.e. the eight most significant bits) of mp is zero, so that
in fact mp < 21016. We introduce the notation B for 21016, so padding has the
property that mp < B.

Decryption of a ciphertext c now consists of several steps:

1. Do textbook RSA decryption to get mp, i.e. compute cd .

2. Check that most significant byte of mp is 0; if not, decryption fails.

3. Remove padding to recover m or, if padding is wrong, note that decryption
fails.
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We consider a scenario where the adversary is able to mount a chosen ciphertext
attack, so he can construct and send ciphertexts to the user, who will decrypt
them. With a good padding system, almost all ciphertexts constructed by the ad-
versary will lead to decryption failure, but we assume that the adversary can dis-
tinguish between failure in step 2 and failure in step 3. Possible ways to achieve
this is through measuring time for decryption, or from the user giving different
error messages in the two cases or possibly for other reasons.

Assume now that the adversary has a ciphertext c, which is a proper encryption
of some plaintext m. We will now study an attack, by which the adversary can
recover mp (and then himself remove padding to get m).

(a) The adversary knows that mp < B (since c is the result of a correct encryp-
tion). His first step is to construct a ciphertext c1, which is the textbook
encryption of 2 ·mp ∈ Z∗N . How does he construct c1? Explain! (3 p)

(b) Assume that the response from the user, when she receives c1, is that step 2
in the decryption fails. Now what does the adversary know about mp? (2 p)

(c) Next, the adversary wants to construct c2, which is the textbook encryption
of (k+1) ·mp ∈ Z∗N , where k is the eight most significant bits of N, seen as
an integer. How does he construct c2? (This is no trick; if you could do (a),
you can do this.) (1 p)

(d) Assume now that decryption fails only in step 3. What does the adversary
now know about mp? (3 p)

(e) Explain some measure that a padding system can use in order to achieve
the above-mentioned effect that almost all the adversary’s ciphertexts lead
to decryption failure. (2 p)

We leave the attack here; the interested reader may be able to see how the ad-
versary can proceed to do a kind of binary search to determine mp completely in
around 1100 queries.
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