
CHALMERS TEKNISKA HÖGSKOLA
Datavetenskap
Björn von Sydow DIT250/TDA351

Exam in Cryptography

Thursday December 16, 2010, 14.00 – 18.00.
Teacher: Björn von Sydow, phone 1040.

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas
efter godkännande av kursansvarig vid dennes besök i skrivsalen.
Allowed aids: Approved calculator. Other calculators with cleared memory may be
used after approval by the responsible teacher.

The exam has 7 problems with a total of 50 points. 22 points are needed to pass.
Answers must be given in English and should be clearly motivated.

1. We consider cryptographic hash functions.

(a) What is meant by a collision attack against a hash function? (2 p)

(b) Explain why any hash function which produces n bit hash values can only
provide n/2 bits of security against a collision attack. (3 p)

2. This question concerns block ciphers.

(a) Which block cipher was most commonly used during the last decades of the
last century? (1 p)

(b) Why is it now considered insecure? (1 p)

(c) Describe how one can still use it with satisfactory security using multiple
encryption. (3 p)

(d) To encrypt large files with a block cipher one can split the file into a se-
quence of blocks and encrypt each block separately. This is the so called
electronic code book mode and has several disadvantages. Describe some
of these. (3 p)

3. In RSA, each user creates a key pair, consisting of a public encryption key and a
private decryption key. To do this, the user first finds two large prime numbers p
and q and computes N = p ·q. She then chooses an integer e ∈ Z∗N and the public
key is (e,N). Describe how the user computes the decryption key d. (3 p)
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4. Alice uses a stream cipher with an LFSR of size 17 as key stream generator. The
LFSR taps two bits of the state:

(a) The adversary knows how Alice’s cipher is constructed, but does not know
the key. He intercepts a ciphertext c1c2 . . .c2000 of size 2000 bits, for which
he knows some of the corresponding plaintext bits, namely m1001m1002 . . .m1100.
Explain how he can decrypt the whole message. (5 p)

(b) The choice of taps above actually makes the key stream period maximal for
that size of LFSR. How long is this period? (1 p)

5. Alice and Bob both share a secret key with the trusted third party Trent; these
keys are KAT and KBT , respectively. They have designed the following protocol,
which allows Alice to send an encrypted message to Bob, where the message is
encrypted using a session key K chosen by Alice:

1. A→ T : A,B,{K}KAT

2. T → A : {K}KBT

3. A→ B : {K}KBT ,{M}K

Alice uses Trent to encrypt the session key for Bob and includes this encrypted
key in message 3, together with the encrypted message.

Unfortunately, the protocol is vulnerable to an attack by the adversary Cedric,
who is an insider, i.e. he also shares a key KCT with Trent and can participate
in runs of the protocol. Explain how Cedric, after eavesdropping on the above
run, can go on to decrypt the message. Then suggest some modification to the
protocol that prevents the attack you found. (5 p)

6. Consider the scenario where Bob receives a contract m from Alice, together with
Alice’s signature s on this document. Bob can then show to anyone that Alice
has signed m. This property is unsuitable for some applications, where Alice’s
commitment to m may be sensitive. For such situations, David Chaum suggested
undeniable signatures. An undeniable signature can only be verified with coop-
eration from the signer. To verify signature s, the verifier Victor engages in a
protocol with Alice. If Victor is someone with whom Alice does not want (or
need) to deal, she may refuse to participate in the protocol, but if she accepts to
interact, there are three possible outcomes of a protocol run:
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(1) The signature is verified;

(2) Victor is convinced that the signature is invalid, i.e. was not issued by Alice;

(3) Victor is convinced that the signature is valid, but Alice is trying to deny this
fact.

The setting is a cyclic group G of prime order q with generator g and a hash
function H with hash values in G. Each signer chooses a private key x ∈ Z∗q and
computes the public key X = gx. The signature on m is s = (H(m))x.

(a) The verification protocol is as follows:
Victor chooses random integers a and b, both smaller than q, and computes
the challenge c = saXb, which is sent to the signer Alice. Alice responds by
sending back r = cx′ , where x′ is the inverse of x in Z∗q, i.e. x ·x′= 1( mod q).
Which equality does Victor then check to verify the signature? Victor needs
to compute some expressions based on what is known to him, i.e. q, g, H,
m, s, X , a, b and r, and then check an equality that will hold if the signature
is valid, but is very unlikely to hold if it is not. (5 p)

(b) If the verification fails, then either the signature is invalid or it is valid, but
Alice is trying to deny that she did produce it. In this case, Victor runs the
protocol once again, with new random values a1 and b1. If the response is
r1, then Victor checks whether

(r ·g−b)a1 = (r1 ·g−b1)a.

If so, Victor believes that the signature is invalid; if not, that Alice is trying
to cheat.
Show that, if Alice is honest, the equality holds.
(You do not need to show that it is infeasible for a dishonest Alice to find
an r1 such that the equality holds, but this can be proved.) (5 p)

(c) How would you recommend to choose the group G? Motivate your choice.
(2 p)

7. We consider again the Padding Oracle attack, which you studied in home as-
signment 2. Recall that the attack was as follows: Alice and Bob share a secret
key KAB for a block cipher E with block size 64 bits and exchange messages
encrypted by that cipher using CBC mode. Before encryption, the message is
padded. If the message consists of n bytes before padding, the padding consists
of 8− (n mod 8) bytes, each with the value 7− (n mod 8) (as an eight-bit inte-
ger). So if n is a multiple of 8, padding consists of eight bytes, each with value 7
(= 000001112). (This is the same padding method as in home assignment 2.)

Now, let Mp be block number p in a message sent from Alice to Bob and let Cp−1
and Cp be blocks p−1 and p in the corresponding ciphertext. p is here arbitrary.
By creating a sequence of carefully chosen messages to send to Bob, the adver-
sary can decrypt and recover Mp, if, for each “ciphertext” message sent by the
adversary, Bob informs the adversary whether that message becomes correctly
padded after CBC decryption.
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We now consider a variant of this attack: if Bob serves as a padding oracle as
above, the adversary can also encrypt any message with KAB – without know-
ing this key! So, we assume that the adversary has a message with k blocks,
A1A2 . . .Ak, that he wants to encrypt. The corresponding ciphertext is C0C1 . . .Ck,
where C0 is a random initialization vector chosen by the adversary and

Ci = EKAB(Ai⊕Ci−1), for i = 1,2, . . .k.

However, the adversary does not know KAB and has to proceed differently.

(a) In order to construct C0C1 . . .Ck, the adversary starts by choosing the last
block Ck arbitrarily. Show how he can then perform a Padding Oracle attack
against Bob and determine DKAB(Ck), where D is the block cipher decryp-
tion function. You must show which messages the adversary constructs and
how he uses Bob’s answers to determine DKAB(Ck). (5 p)

(b) Show that he can now construct a suitable Ck−1, such that the last block
of the decrypted message will be Ak. After this step, the adversary has
constructed Ck and Ck−1. (3 p)

(c) Describe how the adversary continues to encrypt the whole message A1A2 . . .Ak.
(3 p)
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