CHALMERS TEKNISKA HÖGSKOLA

Datavetenskap
Björn von Sydow

Solutions to exam in Cryptography 081218

1. Period is 7 , so the length must be at least 3 . Let the tap sequence be $c_{1} c_{2} c_{3}$. From the given output sequence we can form the system of equations

$$
\begin{aligned}
0 c_{1} \oplus 0 c_{2} \oplus 1 c_{3} & =1 \\
1 c_{1} \oplus 0 c_{2} \oplus 0 c_{3} & =1 \\
1 c_{1} \oplus 1 c_{2} \oplus 0 c_{3} & =1 .
\end{aligned}
$$

This is directly solved from top to bottom, giving $c_{3}=1, c_{1}=1, c_{2}=0$.
We also need to check that this LFSR actually produces the given output, i.e. that the seventh bit of output is 0 . Since we tap at positions 1 and 3 , the seventh bit is $1 \oplus 1=0$.
2. (a) The hash function h is collision resistant if it is infeasible to find two different messages m_{1} and m_{2} with $h\left(m_{1}\right)=h\left(m_{2}\right)$.
(b) First the message is hashed and then the signature is applied only to the hash value.
(c) We should expect to get a collision in $O\left(2^{n / 2}\right)$ steps; this is the so-called birthday "paradox".
3. (a) Let $c=D E S X_{\left(k_{1}, k_{2}\right)}(m)$. We first xor both sides with k_{2}, which gives $c \oplus k_{2}=D E S_{k_{1}}(m \oplus$ $\left.k_{2}\right)$. Next, we apply DES decryption, to get $D E S_{k_{1}}^{-1}\left(c \oplus k_{2}\right)=m \oplus k_{2}$. Finally, we again xor both sides with k_{2} to get the final result

$$
m=D E S_{k_{1}}^{-1}\left(c \oplus k_{2}\right) \oplus k_{2} .
$$

(b) This cipher can be attacked using a meet-in-the-middle attack. We assume that the adversary has a few plaintext/ciphertext pairs (m, c). He can then do a brute force attack on the $D E S$ part, i.e. compute $x=D E S_{k_{1}}(m)$ for all possible keys k_{1}, and store the resulting pairs $\left(x, k_{1}\right)$ in a dictionary. Then he goes through all possible k_{2}, computes $c \oplus k_{2}$ and looks it up in the dictionary. When found, he has a potential key pair $\left(k_{1}, k_{2}\right)$. The complexity of this attack is 2^{64}, which shows that the cipher does not provide 120 bits of security.
Alternatively, with two plaintext/ciphertext pairs (m_{1}, c_{1}) and (m_{2}, c_{2}), one notes that $c_{1} \oplus$ $c_{2}=D E S_{k_{1}}\left(m_{1}\right) \oplus D E S_{k_{1}}\left(m_{2}\right)$, which makes it possible to do a brute force attack with only twice the cost of an attack against $D E S$.
4. (a) No. We require that $e d=1 \bmod \Phi(N)$, where d is the decryption exponent. But $\Phi(N)=$ $(p-1)(q-1)$ is an even number, so if e is even, we cannot find such a d.
(b) The adversary has eavesdropped and thus knows $c=m^{e}$ and $c^{\prime}=m^{e^{\prime}}$. He also knows e and e^{\prime}. Furthermore, $\operatorname{gcd}\left(e, e^{\prime}\right)=1$, since $e^{\prime}=e+2^{i}$ for some i. (Any non-trivial divisor of e must be odd, hence not a divisor of 2^{i}, hence not a divisor of e^{\prime}.) So the adversary can find integers x and y such that $e x+e^{\prime} y=1$. Hence

$$
c^{x} \cdot c^{\prime y}=m^{e x+e^{\prime} y}=m .
$$

5. (a) Let $C_{0} C_{1} C_{2} C_{3}$ be message 2 in a run of the protocol. Then $C_{1} C_{2} C_{3}$ is a valid CBC mode encryption of $N_{A} N_{B}$, so if the order were not changed, an adversary could complete the protocol by just stripping the first block, without knowing $K_{A B}$.
(b) The adversary starts a run of this protocol, using B as nonce, i.e. the beginning of the protocol is
6. $C(A) \rightarrow B \quad: \quad A, B$
7. $B \rightarrow A \quad: \quad\left\{A, B, N_{B}\right\}_{K_{A B}}$

If, again, $C_{0} C_{1} C_{2} C_{3}$ is message 2 , then the adversary can strip the last block from this to get a valid CBC mode encryption of A, B.
6. (a) Victor checks that $R \cdot S=X$ (since $\left.R \cdot S=g^{r+(x-r)}=g^{x}=X\right)$ and either $R=g^{z}$ (if $b=0$) or $S=g^{z}$ (if $b=1$).
(b) If the false Peggy guesses that she will get $b=0$ in message 2, she chooses r at random, and sends $R=g^{r}, S=R^{-1} X$. Her values will then pass Victor's check. If she guesses that $b=1$, exchange R and S. In both cases, $z=r$.
(c) Repeat the protocol t times and accept only if the check succeeds each time. Then a false Peggy has probability 2^{-t} to be accepted.
7. (a) To decrypt ciphertext (Y, c) encrypted for a user with private key x, we proceed as follows:

- Compute $K=Y^{x}$ (this will be the same as X^{y}, computed by the sender).
- Compute $k=b(K)$, where the length of k is the length of c.
- Compute $z=c \oplus k$ and parse this as $m \| t$, where t is n bits long.
- Compute $H(m)$; if this equals t, then return m, else decryption fails.
(b) The adversary gets the ciphertext $\left(Y, c^{\prime}\right)$. He then asks for decryption of

$$
\left(Y, c^{\prime} \oplus\left(m_{0} \| H\left(m_{0}\right)\right) \oplus\left(m_{1} \| H\left(m_{1}\right)\right)\right) .
$$

If we plug in what c^{\prime} is, we see that the message the adversary constructs is a valid encryption of the other message, i.e. the message that Alice did not pick. After getting the decryption, he knows which message Alice did pick.
(c) We just replace the subgroup G with an elliptic curve group. Computations Y^{x} and X^{y} will be replaced by multiplications by a scalar. We have also to agree on some way to use a point as seed to the bit generator e.g. by using the x -coordinate.
The advantage is that we can use much smaller keys and get more efficient computations for the same level of security.

