
CHALMERS TEKNISKA HÖGSKOLA
Datavetenskap
Björn von Sydow INN150/TDA350

Solutions to exam in Cryptography 051212

1. (a) The maximum length is 2n − 1. We cannot have a longer period, since the state of the
generator is a bit string of length n; thus there are 2n possible internal states. The all-
zero state cannot appear in a maximal period LFSR, since that will give an all-zero output
(period 1). Thus we cannot output more than 2n − 1 bits before we return to a previous
state.

(b) The given sequence has 7 consecutive zeros. This means that an LFSR of size seven or
less would lead to an all-zero state after the first bit and then just produce zeros.
It is easy to construct an LFSR of size 8 that produces the given output: we put c8 = 1 and
choose arbitrary values for the other taps. With initial state 10000000, this will generate
the desired output.

2. (a) The length L of key3 is the least common multiple of the lengths of key1 and key2. We form
key3 by forming two words key′1 and key′2 of length L, where key′1 consists of a number of
copies of key1 concatenated and key′2 is similarly formed from a number of conatenated
copies of key2. Then key3 = key′1 +key′2, where the addition symbols means addition letter
by letter (using a=0, b=1, . . .). Then we have that double encryption is (m+key∞

1 )+key∞
2 .

Using associativity of letter-wise addition we see that this is the same as m+ key∞
3 .

(b) The length of key3 is much longer than those of key1 and key2, at least if these are cho-
sen to be of relatively prime lengths, which is recommended. Thus the probabilities for
two occurrences of the same word to be at the same position modulo the period is much
smaller.
Also, if the adversary does find two occurrences of the same ciphertext and computes
their distance, it will not be as easy to guess the correct period from the factorisation of
the distance.

3. (a) A hash function H should map arbitrarily long messages to bit strings of fixed length
(typically 160 bits). It should be fast to compute and it should be collision-free, i.e. it
should be infeasible to find messags m1 and m2 such that with H(m1) = H(m2).

(b) There are many uses of hash functions. We mention some (not all are needed for full
credit):

• Digital signatures are often computed not on a message itself, but on its hash value.
• To produce several subkeys from a master key.
• To construct MACs, such as e.g. the HMAC construction.
• As parts of paddding schemes, such as e.g. OAEP.
• To generate strong pseudo-random numbers.

1



(c) There are several variants but the basic idea is that to generate two messages m1 and m2
with H(m1) = H(m2) one can expect to have to try in the order of 2n/2 messages. This
is in contrast to generation of a message with a given hash value h, which requires in the
order of 2n messsages.

4. We need to use CBC decryption: Mi = DK(Ci)⊕Ci−1.

Let the messages sent in the first run of the protocol be

1. A −→ B : NA

2. B −→ A : {NA,K}KAB .

Then we have that K = DKAB(C2)⊕C1.

Similarly, let the messages in the second run be

1’. A −→ B : N′
A

2’. B −→ A : {N′
A,K′}KAB .

Thus N′
A = DKAB(C

′
1)⊕C′

0 and K′ = DKAB(C
′
2)⊕C′

1.

Now Alice receives C′
0C′

1C2. She decrypts this and gets the two blocks DKAB(C
′
1)⊕C′

0 and
DKAB(C2)⊕C′

1. She checks that the first of these equals her nonce N′
A, which holds. She there-

fore accepts the second block as the new session key (and this is not the key K′ that B chose).
But C can also compute this key since it is

DKAB(C2)⊕C′
1 = DKAB(C2)⊕C1⊕C1⊕C′

1 = K⊕C1⊕C′
1.

Comment: We can easily modify this to become the beginning of the Needham-Schroeder
protocol with exactly the same weakness. So, this is a concrete example of the general fact
that one should not use the encryption primitive, which is developed to provide confidentiality,
when the service needed is authentication.

5. (a) A certificate contains at least the name of a user and his/her public key. In addition it will
typically contain expiration time. The certificate is issued by a certificate authority (CA),
which is trusted by all users. The CA also signs the certificate, so that all users can verify
it; the public key of the CA is known by everyone.
The purpose of certificates and CA’s is to provide a means to authenticate public keys.

(b) The attack proceeds as follows:
1. A −→C : nA

1’. C(A)−→ B : nA

2’. B −→C(A) : CertB, nB, SB{nA,nB}
2. C −→ A : CertC, nB, SC{nA,nB}
3. A −→C : CertA, SA{nB,nA}

3’. C(A)−→ B : CertA, SA{nB,nA}
C makes use of his run with A to get A:s signature on the two nonces, something he could
not produce himself. For this to work, it is essential that he get an initial nonce nA from A
and that he lets B choose the reply nonce. C then just forwards the nonces, adding what is
required; in particular, in 3’ he adds the signature produced by A. After the protocol run,
B will conclude that C is actually A.

2



6. (a) We have that cA = m3 mod N and cB = m5 mod N. We note that 5 ∗ 2− 3 ∗ 3 = 1, so
Deborah computes c2

B · (c
−1
A )3 mod N = m. We also note that c−1

A can be computed using
the extended Euclidean algorithm, since gcd(m,N) = 1.

(b) As long as eA and eB satisfy gcd(eA,eB) = 1, we know that there exist integers x and y with
xeA + yeB = 1. Thus Deborah computes cx

A · c
y
B mod N to recover m. If gcd(eA,eB) > 1

this does not work and there does not seem to be an easy attack for Deborah.

7. (a) Bob checks that sH(m) = g ∈ Z∗
N . Justification: We note that according to the signing

procedure x ·H(M) = 1+ kr for some integer k; thus, computing in Z∗
N , we get

sH(m) = gx·H(m) = g1+kr = g · (gr)k = g ·1k = g.

(b) Since g has order r, r must be a divisor of Φ(N) = (p−1)(q−1). Since r is prime, it must
then be a factor of either p−1 or q−1.

(c) Since gr = 1 ∈ Z∗
N , we must have gr = 1 ∈ Z∗

q. Thus g generates a subgroup of Z∗
q of size

1 or r, since r is prime. But the latter case is impossible, since r is not a divisor of q−1,
the size of Z∗

q. Hence g generates a group of size 1, i.e. g = 1 mod q. Therefore we can
compute gcd(N,g−1) = q to get a factor of N.

3


