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1. Timeframe: 4 hours.

2. Examiner: Balazs Kulcsar, internal phone number: 1785, kulcsar@chalmers.se

3. Necessary condition to obtain the exam grade is to have the course’s mandatory project (all assignments
and the lab) approved. Without approved mandatory project, the archived exam results are invalid.

4. 20 points can be reached in total (with 0.5 point resolution), Lic/PhD students have to reach at least 12
points to pass. For Msc students Table 1 shows the grading system.

Table 1: Grading for Msc students

Points Grade

10 . . . 11.5 3
12 . . . 15.5 4
16 . . . 20 5

5. During this written exam, it is optionally permitted to use printed materials such as:

• Either of the course textbooks (only 1 book): (hardcopy or plain printed version, without notes
inside!)

(i) Feedback systems, an introduction for scientists and engineers by K. J. Åström and R. M. Murray,
ISBN-13: 978-0-691-13576-2, OR (ii) Reglerteknikens grunder by Bengt Lennartson, ISBN: 91-44-
02416-9, (iii) Reglerteknik : grundläggande teori, T Glad, L Ljung.

• 1 piece of A4 paper, with hand written notes on both sides. Copied sheet can not be used.

• Pocket calculator (non-programmable, cleared memory, without graphical plotting function).

• Mathematical handbook Beta (without notes inside!).

6. Note that phones, tablets, computers, any other communication devices are not allowed to use during the
exam session. In scheduled exam session for the course at Chalmers, teacher(s) will show up in person
in the first and last 60 min.

7. Examination results will be advertised no later than January 20th 2017 (pingpong.chalmers.se). Inspec-
tion of results in person, January 23th 10-11 am, E-building floor 6, room 6414 (S2 Bla Rummet).

Good luck!
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Figure 1: Open-loop block diagram

Questions

1. Briefly answer the questions with motivation (each 0.5 point, total 2 point).

a) What is the state-transition matrix and what is the state-transformation matrix?

While the state transition matrix is the solution matrix to the homogeneous state differential equa-
tion(LTI) as eA(t−t0), the state transition matrix changes the state basis, by x̃(t) = Tx(t) (similarity
if T−1 exists).

b) Briefly explain the concept behind the principe of separation.

Principle of eigenvalue separation; the eigenvalues of the closed-loop of an output feedback controller
boils down to two separate eigenvalue conditions (observer and controller). The state observer gain L̄

can be separately design stable from the stable state feedback controller gain K̄ and hence the overall
closed loop will still be stable.

c) What is the main methodological difference (feedback design) between LQR and LQG?

LQR is an optimal state feedback control policy, LQG is output feedback controller design method.

d) How does the multiplicative robust stability test relate to the Small Gain Theorem?

Reordering the multiplicative robustness test we obtain a condition to SGT stability of two intercon-
nected system by their norms as ||∆m(s)|| · ||TN (s)|| ≤ 1

2. Given the following system model by means of block diagram in Figure 1 with a1 = −1, a2 = 0.6,
a3 = −1.5, b = 4, c1 = 0.5, c2 = 2, d = 1.

a) Derive the state-space representation in terms of matrix differential equation (A,B,C,D) for the
depicted in Fig. 1 with the constants given (1 point).

ẋ(t) =

[

−1 0.6
0 −1.5

]

x(t) +

[

1 0
0 4

]

x(t)

ẋ(t) =

[

0.5 0
2 2

]

x(t) +

[

0 0
0 1

]

x(t)

b) By using the matrices (A,B,C,D), compute the transfer function matrix G(s) (2 point).
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Do not forget the D term to add as,

G(s) = C(sI2 −A)−1B +D =

[

0.5
s+1

1.2
s2+2.5s+1.5

2
s+1

s2+10.5s+14.3
s2+2.5s+1.5

]

c) Based on G(s), is this a non-minimum phase representation? Is the transfer function matrix strictly
proper? Is the system input-output stable? Is the system internally stable? Briefly motivate your
answers (2 point)!

det(G(s)) ⇒ z = −9.5, so the system has stable zero and therefore is minimum phase model, p1 =
−1, p2 = −1.5 describes stable poles and hence the system is IO stable. Checking eig(A) return 2
eigenvalues λ1 = −1, λ2 = −1.5, therefore the system is internally stable too. Finally all transfer
functions in the TF matrix does have the property g(s) = b(s)

a(s) , deg(a(s)) ≥ deg(b(s)) and hence it is
proper, but not strictly proper.

d) Cross channel steady state gains. What is the steady state value for y1 if ∀t, u1 = 0, u2 = 1 is applied?
What is the steady state value for y2 if ∀t, u1 = 1, u2 = 0 is applied?(1 point)!

Since the system is stable we apply the FVT as,

lim
t7→∞

y1(t) = lim
s 7→0

sY1(s) = lim
s 7→0

sG(s)

[

0
1
s

]

= lim
s 7→0

1.2

s2 + 2.5s + 1.5
=

1.2

1.5

lim
t7→∞

y2(t) = 2

3. Given the following state-space representation by,

x(k + 1) =

[

−1.5 −0.5
−α 0

]

x(k) +

[

1
α

2

]

u(k)

y(k) =
[

2 1
α

]

x(k)

with 0 < |α| < ∞,

a) Is the state-space representation minimal for all α? (1 point)

Not,

R =

[

1
α

− 3
2α − 1

2 −1

]

⇒ det(R) = 0 ⇒ not reachable if α = −1

O =

[

2 1
α

−4 −1

]

⇒ det(O) = 0 ⇒ not observable if α = 2

b) With α = −1 is the representation controllable? (1 point)

with α = −1 create R

rankR = 1 6= rank
[

R A2
]

= rank

[

−1 1
2

7
4

3
4

2 −1 −3
2 −1

2

]

= 2 ⇒ not controllable at α = −1

c) With α = 1, find the reachable (similarity) state transformation matrix T . With the help of T

transform the system into a reachable canonical representation, (Ã, B̃, C̃)! (2 point)

a(s) = s2 + 1.5− 0.5 ⇒ R̃ =

[

1 −1.5
0 1

]

⇒ T = R̃R =

[

0.5 0.25
−0.5 0.25

]

, T−1 =

[

1 −1
2 2

]

Ã = TAT−1 =

[

−1.5 0.5
1 0

]

B̃ = TB =

[

1
0

]

, C̃ = CT−1 =
[

4 0
]
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d) With α = 1 and the reachable state space form find u(k) = −K̃x̃(k)+krr(k) such that the closed-loop
poles are allocated to −0.5 (both). Find kr such that r∞ = y∞! (2 point)

(λ̃+ 0.5)(λ̃ + 0.5) = λ̃2 + λ̃+ 0.25, λ2 + 1.5λ − 0.5 ⇒ K̃ =
[

1− 1.5 0.25− (−0.5)
]

=
[

−0.5 0.75
]

kr = {C̃(I − Ã+ B̃K̃)−1B̃}−1 = 0.083

4. Consider the following time discrete problem
[

x1(k + 1)
x2(k + 1)

]

=

[

0 0
1 0

] [

x1(k)
x2(k)

]

+

[

1 0
0 1

] [

u1(k)
u2(k)

]

y(k) =
[

1 1
]

[

x1(k)
x2(k)

]

+
[

0 1
]

[

u1(k)
u2(k)

]

a) Find cost function J provided that the solution of the discrete time Control Algebraic Ricatti Equation

is known as P̄ =

[

2 1
1 2

]

, and Qu =

[

2 0
0 2

]

(1 points).

Qx = P̄ −AT P̄A+AT P̄B(BT P̄B +Qu)−1BT P̄A =

[

1.0667 1
1 2

]

,

J(u) =
1

2

∞
∑

j=0

(

1.0667x21(j) + 2x22(j) + 2x1(j)x2(j) + 2u21(j) + 2u22(j)
)

b) Find the closed-loop poles (1 point).

K̄ = Q−1
u BT P̄ =

[

0.1333 0
0.4667 0

]

⇒ eig(A −BK̄) ⇒ λ1 = 0, λ2 = −0.1333

c) Now the system is exposed to process v(t) and sensor noise w(t). The noise is added to input as
u1(k) + v(k) and to output as y(k) + w(t), where the zero mean uncorrelated noise covariances are
Rv = Rw = 1. Find the (delayed) Kalman filter gain L̄ and the observer’s poles (2 point).

Solve the FARE 0 < P̄ =

[

1 0
0 0.68

]

, L̄ = AP̄CT (Rw + CP̄CT )−1 =

[

0
0.382

]

⇒ λ1 = 0, λ2 = −0.382

d) With K̄ and L̄ draw the LQG controlled system’s block diagram, including integrators, gains and
signal steams. (1 point).

Plot the blockdiagram

5. Given the following state-space representation and cost functional by,

ẋ(t) = x(t) + 2u(t) +
√
3d(t)

y(t) = cx(t)

J(u, d) =
1

2

∫

∞

0

(

y2(τ) + u2(τ)qu − γ2d2(t)
)

dτ

where γ = 1, qu = γ. Find the best case control input and worst case disturbance feedback gains that
results in J(u∗, d∗) = minumaxd J(u, d) (1 point).

Qx = c2, A = 1, B = 2, L =
√
3, Qu = 1, γ = 1 ⇒ MCARE

⇒ 2P̄ + c2 − P̄ 2(2 · 21
1
− 1

1

√
3
√
3) = 0 ⇒ P̄ 2 − 2P̄ − c2 = 0 ⇒ P̄ =

−(−2) +
√
4 + 4c2

2
> 0

⇒ K̄ L̄, according to the definitions
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