
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Signals and Systems
Control, Automation and Mechatronics

SSY280 Model Predictive Control
Final exam 2012-03-08

M 14.00 – 18.00

Teacher: Bo Egardt, tel 3721.

The following items are allowed to bring to the exam:

• Chalmers approved calculator.

• One A4 page with your own notes.

• Beta.

Grading: The exam consists of 5 problems of in total 30 points. The nominal
grading is 12 (3), 18 (4) and 24 (5). Solutions may be short, but should always be
clear and well motivated!
Grading results are posted not later than March 22 at the billboard on the 5th floor.
Review of the grading is offered on March 22 at 12.30 – 13.30. If you cannot
attend at this occasion, any objections concerning the grading must be filed in
written form not later than two weeks after the regular review occasion.

Note that solutions should be given in English!

GOOD LUCK!



Problem 1.

a. The standard plant model used in the course is given by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cyx(k)

z(k) = Czx(k)

Show how this model can be transformed into a model that instead uses
control moves ∆u as input. (2 p)

b. Explain why the type of MPC algorithms studied in the course give convex
optimization problems to solve. (2 p)

c. What is meant by functional predictive control? (2 p)

d. In some cases, it can be motivated to define setpoints not only for outputs,
but also for inputs. When is this the case, and why is it done? (2 p)

e. Using state constraints (as opposed to control constraints) in MPC has a
drawback — which one?

(2 p)

Solution:

a.

ξ+ = Aξ + B∆u

y = Cx

with

A =

[
A B
0 I

]
B =

[
B
I

]
C =

[
C 0

]
b. The optimization problem is convex since 1) the objective function is quad-

ratic, hence convex, and 2) the constraints are affine, i.e. the feasible set is
described as the solution set of a number of linear (in)equalities, which is
convex.

c. Functional predictive control makes use of a parametrization of the se-
quence of future control outputs as a weighted sum of basis functions, often
polynomials as function of time.

1



d. Setpoints for inputs are used when there are more control inputs than con-
trolled outputs with setpoints. It is done to avoid multiple solutions to the
setpoint tracking problem.

e. State constraints imply that there is a risk of infeasibility of the optimization
problem.

Problem 2.
Consider the first order system described by

y(k + 1) = ay(k) + u(k)

You are supposed to work out the details for a simple MPC controller for this
system. The prediction horizon is 2 and the control horizon is 1. The controller is
based on minimization of the objective

V2(y(k), u(k|k)) = (ŷ(k + 1|k)− r(k))2 + α(ŷ(k + 2|k)− r(k))2

where α is a tuning parameter.

a. Solve the optimization problem and give an expression for the control law.
Hint. Use standard assumptions. (3 p)

b. Determine the closed-loop poles in the two extreme cases with α = 0 and
α→∞, respectively. (2 p)

Solution:

a. The predictions are given by

ŷ(k + 1|k) = ay(k) + u(k|k)

ŷ(k + 2|k) = aŷ(k + 1|k) + û(k + 1|k) = a2y(k) + (1 + a)û(k|k)

where the standard assumption û(k + 1|k) = û(k|k) has been used (since
the control horizon is 1). To find the minimizing control, differentiate w.r.t.
û(k|k) and set the result equal to zero, giving (use the abbreviations u =
û(k|k), y = y(k), r = r(k)):

2(ay + u− r) + 2α(1 + a)
(
a2y + (1 + a)u− r

)
= 0 ⇔

a
(
1 + aα(1 + a)

)
y +

(
1 + α(1 + a)2

)
u−

(
1 + α(1 + a)

)
r = 0

which results in the control law

u(k) =
1 + α(1 + a)

1 + α(1 + a)2
r(k)− a(1 + aα(1 + a))

1 + α(1 + a)2
y(k)
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b. The control law in the extreme cases become

u(k) =

{
r(k)− ay(k), α = 0
1

1+a
r(k)− a2

1+a
y(k), α→∞

which gives the closed-loop dynamics

y(k + 1) =

{
r(k), α = 0
a

1+a
y(k) + 1

1+a
r(k), α→∞

The closed-loop poles are thus p = 0 and p = a/(1 + a) in the two cases.

Problem 3.
You are presented with the task to design an MPC controller (of the type we have
studied in the course) for a system, which can be described by the state space
model

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(1)

with the following characteristics:

• The system is strictly stable, i.e. the eigenvalues of A are strictly inside the
unit disc.

• There are 2 control inputs.

• There are 3 outputs, all of which are measured, but only outputs no 1 and 3
are controlled, with r1 and r3 as setpoints.

• The controlled outputs are subject to constant but unknown additive output
disturbances.

a. Show how the two disturbance terms can be estimated using a simple ob-
server, whose error dynamics is determined by eigenvalues in the origin and
eigenvalues of A.
Hint. Use a modified DMC scheme. (2 p)

b. Based on the estimates, determine suitable steady state targets, without con-
sidering possible constraints. (2 p)

c. Considering that the first and third outputs are controlled, we choose the
weighting matrix Q for the state-dependent part of the stage cost in the
optimization objective as

Q = c1c
T
1 + c3c

T
3 ,
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where cT1 and cT3 are the first and third row of the matrix C, i.e

C =

cT1cT2
cT3


Give the full expression for the state dependent part of the objective. (2 p)

Solution:

a. Using the model

x(k + 1) = Ax(k) +Bu(k)

d(k + 1) = d(k)

y(k) = Cx(k) + Cdd(k)

with dT = [d1 d2] and

Cd =

1 0
0 0
0 1


an observer of DMC type is given by

x̂+ = Ax̂+Bu

d̂+ = d̂+H(y − Cx̂− Cdd̂)

with

H =

[
1 0 0
0 0 1

]
b. Since there are two inputs and two controlled outputs, the steady state target

can be determined from the solution to[
I − A −B
HC 0

] [
xs
us

]
=

[
0

r − d̂

]

where rT = [r1 r3].

c. From above, we have HCxs = r − d̂, which can be written as

cT1 xs = r1 − d̂1
cT3 xs = r3 − d̂2
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The state dependent part of the stage cost can then be written

N−1∑
i=0

(x̂(k + i|k)− xs)TQ(x̂(k + i|k)− xs)

=
N−1∑
i=0

[(
cT1 x̂(k+i|k)+d̂1(k)−r1(k)

)2
+
(
cT3 x̂(k+i|k)+d̂2(k)−r3(k)

)2]
Problem 4.
The prediction and control horizons are two of the design parameters for an MPC
algorithm.

a. What is a reasonable choice of prediction horizon? (1 p)

b. What is the reason why the control horizon is usually chosen smaller than
the prediction horizon? (1 p)

c. Show in detail how equality constraints, representing the state equations of
the model

x+ = Ax+Bu,

can be formed for the case when the prediction and control horizon are not
equal. Which assumption do you need? (3 p)

Solution:

• Approximately equal to the settling time of the system.

• The control horizon strongly influences the computational complexity.

• Done in assignment 2.

Problem 5.

a. When proving stability of a model predictive controller, a fundamental step
is the following assumption (taken from the lecture notes):

min
u∈U
{Vf (f(x, u)) + l(x, u) | f(x, u) ∈ Xf} ≤ Vf (x), ∀x ∈ Xf

Explain how this assumption can be shown to hold by choosing Xf = {0}.
(1 p)
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b. During the lectures, a simple MPC withN = 2 was studied for an integrator
process x+ = x + u with control constraint −1 ≤ u ≤ 1. It was shown,
using geometric arguments, that the resulting control law could be described
as a saturated linear feedback:

u(x) =


1 x ≤ −5/3

−3/5 · x −5/3 ≤ x ≤ 5/3

−1 x ≥ 5/3

Based on the expression for the objective,

VN(x, U) = UTH U + 2 · [2x x]U + 3x2,

where x = x(0), U = [u(0) u(1)]T and H =

[
3 1
1 2

]
, verify that the

control law obtained satisfies the KKT conditions. What happens when
x = −3 and x = 3, respectively?
Hint. The KKT conditions for this case (i.e. no equality constraints) are
given by (note that here x is a general notation for the vector of decision
variables) are:

(i) Primal constraints: gi(x) ≤ 0, i = 1, . . . ,m

(ii) Dual constraints: λi ≥ 0, i = 1, . . . ,m

(iii) Complementary slackness: λigi(x) = 0, i = 1, . . . ,m

(iv) Gradient of the Lagrangian equal to zero:

∇f(x) +
m∑
i=1

λi∇gi(x) = 0

(3 p)

Solution:

a. Trivially fulfilled if f(0, 0) = 0, Vf (0) = 0 and l(0, 0) = 0.
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b. The KKT conditions become

g1 = u(0)− 1 ≤ 0

g2 = −u(0)− 1 ≤ 0

g3 = u(1)− 1 ≤ 0

g4 = −u(1)− 1 ≤ 0

λ ≥ 0

λigi = 0

H U +

[
2x
x

]
+

[
1 −1 0 0
0 0 1 −1

]
λ = 0

Note that λ1, λ2 can not be nonzero simultaneously; the same holds for
λ3, λ4. It can then be verified that the solution is obtained from 5 cases:

(i) λ = 0 (no active constraints):

H U +

[
2x
x

]
= 0⇒ U =

[
−3/5
−1/5

]
x, −5/3 ≤ x ≤ 5/3

(ii) λ1 > 0 (⇒ λ2 = 0, g1 = 0), λ3 = λ4 = 0:

u(0) = 1, u(1) = −1 + x

2
, −3 ≤ x ≤ −5/3

(iii) λ1 > 0 (⇒ λ2 = 0, g1 = 0), λ3 > 0(⇒ λ4 = 0, g3 = 0):

u(0) = 1, u(1) = 1, x ≤ −3

(iv) λ2 > 0 (⇒ λ1 = 0, g2 = 0), λ3 = λ4 = 0:

u(0) = −1, u(1) =
1− x

2
, 5/3 ≤ x ≤ 3

(v) λ2 > 0 (⇒ λ1 = 0, g2 = 0), λ4 > 0(⇒ λ3 = 0, g4 = 0):

u(0) = −1, u(1) = −1, 3 ≤ x

As seen from the above, u(1) leaves/enters the constraint at x = −3 and
x = 3, but this has no effect on the receding horizon controller, which is
determined bu u(0).
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