
Solution
motivat
possible
the ratio

In total
15 and

Solution
date. Ex
exams a

Dis

Exam

ns and answ
ted. In the
e assumptio
onality of as

the exam c
20 credits.

ns will be
xam results
are open for

screte

SSY 22
Te

Time

wers should
case of am

ons must be
ssumptions

comprises 2

announced
s are announ
r review sev

e Even

20, Satu
eacher: Ma

when teac

d be comple
mbiguously f
e motivated
and motiva

25 credits. F

on the cou
nced throug
ven work da

A

nt Con

urday, M
artin Fabian

cher prese

ete, written
formulated

d. The exam
ations.

For the grad

urse web-pa
gh Chalmer
ays after the

Aids: None

trol an

May 24, 0
n, (772) 37

ent: 09:30,

in English
exam tasks

miner retains

des 3, 4 and

age on the
rs’ administ
e exam, 12:3

e.

D
nd Opt

08:30-12
716

11:30

and be una
s, the sugge
s the right t

5, is respec

first week-d
trative routi
30 – 13:30 a

DEC
timiza

2:30, V

ambiguous a
ested soluti
to accept or

ctively requ

day after th
ines. The c
at the depar

CO
ation

and well
ion with
r decline

uired 10,

he exam
orrected
rtment.

Task 1. Abstractions for Compositional Methods, and Modular Synthesis

We have a small manufacturing system as shown below. M1, M2 and M3 are machines, and
B is a buffer. The plant can be modeled by the simple automata given to the right below. The
si events (i = 1,2,3) are controllable, while the fi events are uncontrollable.

M1

M2

B M3

s1

s2

f1

f2

s3 f3

S0 S1s1
!f1

S0 S1s2
!f2

S0 S1
s3
!f3

M1

M2

M3

a) Give a specification for the buffer to hold one work piece, never to over- or underflow,
and to always end up empty. (2p)

b) Abstract the system as much as possible for compositional nonblocking verification. (2p)

c) Abstract the system as much as possible for compositional supervisor synthesis. (3p)

d) Using modular synthesis, calculate a supervisor for the non-abstracted system. (3p)
The specification B can look like this:

S0 S1

!f1
!f2
s3

We can start by abstracting M3, noting that !f3 is a local uncontrollable event. This
abstraction is valid both for verification and synthesis, and it makes M3 self-loop only so it
can be ignored.

For compositional verification, we can merge states that are connected by local events,
whether those events are uncontrollable or not, so M1, M2, and B can all be merged into self-
loop only automata with their respective single states marked. Thus, the system is obviously
nonblocking.

For compositional synthesis, we cannot merge states connected by local controllable events.
However, for synthesis we need to “plantify” the specification, which looks like this:

S0 S1

!f1
!f2
s3

dump

!f1
!f2

Modular synthesis is straightforwardly done by only considering M1, M2 and B. The result
looks like this (the forbidden states can be removed, of course):

Task 2

Below
area is t
objectiv
positive

a) Form
func

b) Prep
mus

c) Usin

. Linear Pr

are given g
the feasible
ve function
e.

mulate an L
ction.
pare the mo
st always be
ng the given

rogrammin

graphically
e set, and th

to minimiz

LP problem

odel to be
e larger or e
n constants,

S1.S0.S1

!f1

s3

S1.S1.S1

s1

s3

ng

the constra
he lines are
ze is also gi

in standard

solvable by
equal to zero
, give an up

y 

S0.

S0.S

S0.S1.S1

s1

S1.S

s2S1.S1.S0

!f2

s2

s1

s3

s2

aints for a l
given by th
iven in the

d form for th

y the table
o.
pper bound

1x m  

S0.S0.S0

S0.S1

s2

S1.S0

s1

S0.S0

!f2

!f1

s3

linear optim
he respectiv
figure. All

he given con

au method.

on the optim

y x m  

3

mization pro
e equations
constants, a

nstraints and

 Remembe

mum of the

2m

oblem. The
s at the botto
a, b, m1 and

d objective

er that all v

 objective f

e shaded
om. The
d m2 are

(2p)
variables

(3p)
function.

(1p)

Task 3. Integer Linear Programming Theory

In integer linear programming theory the notion of a totally unimodular matrix arises.
Describe what this is and why it is important. (3p)

A unimodular matrix is a square integer matrix the inversion of which is also integer. A
totally unimodular matrix is a, not necessarily square, matrix for which all non-singular
square sub-matrices are unimodular. This definition implies that a totally unimodular matrix
only contains -1, 0 and +1 elements. In an integer linear programming problem, if the A-
matrix is totally unimodular and the b-vector is integer, then the optimal solution calculated
as a linear programming problem will also be integer. Thus, solving the LP-relaxation will
immediately solve the original IP-problem.

Task 4. Discrete Optimization

F

C D

A

E

B

3

1

4
4 5

12

10

8

5
9

4

Above is given a graph, with costs on the edges.

a) Using Dijkstra’s algorithm, find the least cost path through the graph. (3p)

b) Using the A* algorithm, find the least cost path through the graph. (3p)

In both cases, show on each iteration which node is taken out from and put in to the queue,
and also what the queue looks like. For b) you need to define a good estimate.

The optimal path is A-B-F.

The workings of Dijkstra’s algorithm is shown to the left, below, and A* is to the right.
Dijkstra’s Algorithm A*

A[0,-] B[1,A] C[4,A] A[0,10,-] B[1,9,A] C[4,10,A]

B[1,A] C[4,A] F[13,B] D[6,B] B[1,9,A] F[13,0,B]: C[4,10,A]: D[6,8,B]

C[4,A] D[6,B] F[13,B] E[13,C] F[13,0,B] D[6,8,B]: C[4,10,A]

D[6,B] E[11,D] F[13,B]

E[11,D] F[13,B]

F[13,B]

The first element within the brackets is the current cost of the node, the last element is the
current parent, and the middle element is the estimate.

Note that the given estimates are monotonic and not over-estimating, and this example shows
that the tighter the estimate, the better A* performs. Here it goes straight for the goal, never
diverging from the optimal path (which Dikstra’s algo does).

Beware the A-B-A-loop. This has to be excluded in some way, else the algorithm may walk
around and around forever, but I guess you have already discovered this (as did I).

