
DECO 
Discrete Event Control and Optimization 

Exam SSY 220, Tuesday May 28, 08:30-12:30, M 
Teacher: Martin Fabian, (772) 3716 

Time when teacher present: 09:30, 11:30 

 
Solutions and answers should be complete, written in English and be unambiguous and well 
motivated. In the case of ambiguously formulated exam tasks, the suggested solution with 
possible assumptions must be motivated. The examiner retains the right to accept or decline 
the rationality of assumptions and motivations. 

In total the exam comprises 25 credits. For the grades 3, 4 and 5, is respectively required 10, 
15 and 20 credits. 

Solutions will be announced on the course web-page on the first week-day after the exam 
date. Exam results are announced through Chalmers’ administrative routines. The corrected 
exams are open for review seven work days after the exam, 12:30 – 13:30 at the department. 

 
Aids: None. 



Task 1. Controllability 

Controllability is an important property in the Supervisory Control Theory; the supervisor 
must be controllable with respect to the plant and the uncontrollable events. Below is a 
specification K and a plant component Gi of which there are two (i = 1,2), and the 
uncontrollable events are !b1, and !c2 (note that the plant components are not identical in this 
respect). By a clever trick called plantify we can remove the distinction between plant and 
specification while still being able to synthesize a proper supervisor. 

X

Y

ai
ci

Z

bi

ci

q0 !c2

q1

!b1

q2

b2c1 !c2

Gi K

 
1 1 1 1, ,G a b c  

 
2 2 2 2, ,G a b c  

 1 1 2 2, , ,K b c b c   

 
a) Explain controllability and give the formal definition. What can happen if controllability 

does not hold? (2p) 

b) Plantify the given specification K above. (2p) 

c) Is K controllable with respect to the Gi (i = 1,2) and the uncontrollable events !b1, and 
!c2? Explain. (2p) 

Formally controllability is defined as       u G KL G K L G L G K      , which for 

equal alphabets is equivalent to      uL K L G L K  . If controllability does not hold, 

the closed-loop system may be forced outside the spec due to an uncontrollable event. 

K is not controllable. After a1.!b1.a2, the plant can do !c2 but the specification does not 
agree. We see this in the plantified version of K below, where !b1.!c2 leads to the dump state. 

dump:q0

!c2
q1

!b1

q2
b2

!b1
!c2c1

!b1

!c2  

Task 2. Abstractions for Compositional Verification 

Emilia was given the task to calculate a supervisor by compositional synthesis. One of the 
automata looked like the one to the left below. Emilia happily abstracted away the local 
uncontrollable event (!u2) into the automaton on the right.  



      

S0

S1

a

S2

!u1

(!u2)

S3

!u1

c2 c2

G
S0

S1.S2

a
!u1

c2

(!u2)

S3

!u1

c2

Gabs

 
a) Is the abstraction valid for controllability verification? Explain.  (3p) 

b) Is the abstraction valid for non-blocking verification? Explain. (3p) 

Answering these questions requires finding some test (plant or specification) that does not 
include the local event (!u), such that it gives different results with G and Gabs. And different 
results means controllable and uncontrollable, and blocking and non-blocking, respectively. 
Note that to assess validity for non-blocking verification, the test must fail due to blocking, 
not due to uncontrollability, and vice versa. So, different tests are needed to assess the two 
properties.  

The abstraction is not valid for controllability verification. We can see this if we consider a 
test with the language (!u1.c2)*. This is controllable with G but uncontrollable with Gabs.  

The abstraction is also not valid for non-blocking verification. We can see this if we consider 
a test which blocks the controllable event a and has the language (!u1.!u1.c2)*. This is non-
blocking with Gabs but blocking with G. 

Task 3. Linear Programming 

Emil has an integer programming minimization problem that he tries to solve with LP-
relaxations and branch and bound. The search tree Emil has generated so far is shown below. 
The zi (with i = 0-12) values are the current LP-relaxation solutions at the respective node; 
the values for z5 and z9 are not disclosed. The nodes are solved in the order of their 
numbering. The term  denotes that all variables are integer in the LP-relaxed solution 
at the respective node. The nodes marked with a slash (\) are cut off and will not be searched 
further by Emil. 

 



a) Why are nodes 4, 7, and 11 cut off? (1p) 

b) Why is node 6 cut off?  (1p) 

c) Why is node 10 cut off? (1p) 

d) Between which bounds lies z5? (1p) 

e) Between which bounds lies z9? (1p) 

f) Between which bounds lies the global solution z*? (1p) 

Nodes 4, 7 and 11 are cut off because they have integer solutions, and continuing searching 
down those paths will not reveal any integer solutions with better (lower) values. Node 6 is 
cut off because node 4 already has a better integer solution. Node 10 is cut off since node 7 
has an integer solution with better value. 576,8 80,5z   978,3 80,5z   78,9 * 80,5z  .  

Task 4. Discrete Optimization 

Emilia works as a project manager. She has a new project to manage, that she has broken 
down into sub-tasks with some requirements and estimated times. This is summarized in the 
table below. 

Sub-task Time Requirements 

A 6 Not simultaneously with B 

B 5 Not simultaneously with A 

C 3 Can start only after A is done 

D 4 Can start only after A and B are done 

E 3 Can start only after C and D are done 

 

a) Draw a (precedence) graph that models this project. (3p) 

b) Using Dijkstra’s algorithm, find the least cost path through the graph. Show on each 
iteration which node is taken out from and put in to the queue, and also what the queue 
looks like. (2p) 

c) There are more than one equally good least cost paths for this example. Does Dijkstra’s 
algorithm have any preference for one of them? If so, or not so, explain. (2p) 

The graph looks something like below. Note that B and C, as well as C and D can be done in 
parallel, and the time is then the maximum of either, see the edge from A directly to ABC, 
and from AB to ABCD, respectively.. 



 
Above, the node A, for example, represents that the task A is done. Dijkstra’s algorithm 
should perform something like this: 

0[0,-]: B[5,0],  A[6,0]: 

B[5,0]: A[6,0],  AB[11,B]: 

A[6,0]: AC[9,A],  AB[11,B],  ABC[11,A]: 

AC[9,A]: ABC[11,A],  AB[11,B]: 

ABC[11,A]: AB[11,B],  ABCD[15,ABC]: 

AB[11,B]: ABCD[15,ABC],  ABD[15,AB]: 

ABCD[15,ABC]: ABD[15,AB],  ABCDE[18,ABCD]: 

ABD[15,AB]: ABCDE[18,ABCD]: 

ABCDE[18,ABCD]: 

Goal node found -- 

ABCDE[18,ABCD]: ABCD[15,ABC]: ABC[11,A]: A[6,0]: 0[0,-]: 

There are three equally good best paths, 0-A-AB-ABCD-ABCDE, 0-B-AB-ABCD-ABCDE, 
and 0-A-ABC-ABCD-ABCDE, all with cost 18. The first two reach AB with cost 11, and the 
third reaches ABC with cost 11. In relation to the first two, Dijkstra’s algo, always going for 
the currently cheapest node, will always choose B in the beginning. Thus, AB is always 
reached first along 0-B-AB, and the second time AB is encountered, along 0-A-AB, it is not 



reached with a better value (it is the exact same value), and so its current parent of AB, that 
is B, will not be updated. So there is a preference there, the best cost path through AB will 
never be along the A node. 

However, when it comes to 0-B-AB-ABCD-ABCDE versus 0-A-ABC-ABCD-ABCDE, it is 
only a matter of the order they are taken out from the queue. If AB is taken out before ABC, 
then the best cost path will go through AB, else it will go through ABC, as above. So there is 
no preference there. 

 


