
DECO 
Discrete Event Control and Optimization 

Exam SSY 220, Friday Aug 19, 08:30-12:30, M 
Teacher: Martin Fabian, (772) 3716 

Time when teacher present: 09:30, 11:30 

 
Solutions and answers should be complete, written in English and be unambiguous and well 
motivated. In the case of ambiguously formulated exam tasks, the suggested solution with 
possible assumptions must be motivated. The examiner retains the right to accept or decline 
the rationality of assumptions and motivations. 

In total the exam comprises 25 credits. For the grades 3, 4 and 5, is respectively required 10, 
15 and 20 credits. 

Solutions will be announced on the course web-page on the first week-day after the exam 
date. Exam results are announced through Chalmers’ administrative routines. The corrected 
exams are open for review Wednesday Aug 31, 12:30 – 13:30 at the department. 

 
Aids: None. 



Task 1. Supervisory Control Theory 

A supervisor is a control function for a discrete event system. Typically a supervisor is 
automatically generated from a plant describing the possible behavior, and the specification 
describing the allowed behavior of the uncontrolled and controlled system, respectively. 

a) Explain the notion of controllability, and exemplify what can happen when this property 
is not fulfilled. (1p) 

b) Explain the notion of non-blocking, and exemplify what can happen when this property is 
not fulfilled. (1p) 

c) Explain the notion of minimally restrictive, and exemplify what can happen when this 
property is not fulfilled. (1p) 

d) Explain the notion of non-conflict, and exemplify what can happen when this property is 
not fulfilled. (1p) 

“Controllability” captures the property that the supervisor must always enable (“be ready 
for”) the uncontrollable events that the plant can generate in any state that the supervisor 
allows the closed-loop system to reach. If the controllability property is not fulfilled, the 
plant can take the closed-loop system outside the allowed behavior described by the 
specification. 

“Non-blocking” describes the property that the supervisor must be such that it always allows 
at least one of the marked states to be reached. The marked states represent significant 
“situations”, and so at least one of them should always be reachable, otherwise none of these 
significant “situations” would ever be able to arise. A typical significant “situation” is to 
reach the initial state. 

“Minimally restrictive” captures the property that the supervisor should do its job with as 
little intervention as absolutely possible. Without this property, the degenerate “null” 
supervisor, which guarantees that nothing bad happens by guaranteeing that nothing at all 
happens, would be a solution to the synthesis problem. 

“Non-conflict” concerns the property that two supervisors supervising the same system 
should have in relation to each other to guarantee that (if both are individually non-blocking) 
the closed-loop system of the plant and the two supervisors is non-blocking. If the supervisors 
are conflicting, they may block the closed-loop system. 

Task 2. Supervisor Synthesis 

Two machines, M1 and M2, are connected in series with a buffer in-between, see below left. 
The machines are modeled as the simple automaton to the right. The events fi ( 1, 2i  ) are 
un-controllable. The f1 event represents that M1 is finished and puts a product in the buffer, 
while the s2 event represents that M2 takes a product from the buffer. The s1 and f2 events 
represent that M1 gets a product from the outside, and that M2 deposits a product to the 
outside, respectively. 
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a) Give a specification that guarantees that at most one product is in the buffer at all times, 
and that the system can always return to the initial state, with no products in either of the 
machines or the buffer. (1p) 



b) Give a specification that guarantees that at most two products are in the buffer at all 
times, and that the system can always return to the initial state, with no products in either 
of the machines or the buffer. (1p) 

c) Give a specification that guarantees that at most n products (with n an arbitrary integer 
larger than zero) are in the buffer at all times, and that the system can always return to the 
initial state, with no products in either of the machines or the buffer. (1p) 

d) From the specification given in c), and the given plant models, synthesize a supervisor.  
  (3p)  

The specifications look like this: 
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Now we can observe that these specs share uc-events only with M1, so we can do the 
synthesis with only M1, and then reason about whether the result will be non-blocking when 
we involve also M2. Synchronizing the specs with M1 gives the following, where the squared 
states are forbidden, since M1 could do the uc-event f1 there, but the spec does not agree. 
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As we can see, only controllable events lead to the forbidden states, and thus we can simply 
remove the states and their transitions, and the result will be controllable. Will it also be 
non-blocking when M2 comes in to play? The answer is yes, simply because M2 can always 
execute its s2 event, in the worst we will have to wait for it to execute its “free” f2 event, but 
always eventually. 

Note one additional thing. As the plants and specs are given, all states with a b0-component 
would be marked in the synchronization. However, we altered this above to better conform to 
the intent of the requirement given in the text. This is an insignificant detail (in this case).  

Task 3. Discrete Optimization 

A* is a branch-and-bound algorithm that uses both the cost g(n) to get to a node n, and an 
estimate h(n) to get from n to the goal, to guide the search. A* is similar to Dijkstra’s 
algorithm, but they are not equal. 

a) When are A* and Dijkstra’s algorithms equivalent? (1p) 

b) Assume we have two different estimate functions h1(·) and h2(·), that both guarantee that 
the optimal path is found, and where for all n, h1(n) ≤ h2(n). Describe how A* behaves 
with the two respective estimate functions related to each other. (1p) 



c) Assume that the estimate function h(n) is always equal to the true cost h*(n)  from any  
node n to the goal. Describe how A* behaves then. (1p) 

d) Assume that h(n) is at some nodes larger than the true cost h*(n). Describe how A* 
behaves then. (1p) 

e) Suggest a realistic estimate, that guarantees that the optimal path will be found, to use 
when path-planning a production system where a number of jobs concurrently share a 
number of resources. (1p) 

A* is guided by both the cost of getting to a node n (g(n)) and an estimate of getting from n to 
the goal (h(n)). To guarantee that the optimal path to the goal is found,  

 h(n) must not over-estimate the true value h*(n), that is h(n) <= h*(n), and 

 h(n) must me monotonic, that is, for two nodes n1 and n2, such that n2 is reachable from 
n1 with weight w(n1,n2), h(n1) <= w(n1,n2) + h(n2). 

For a system with a number of jobs routed through a number of resources, one such estimate 
comes from regarding each job as running by itself through its needed resources. Of course, 
the time to finish a single job must be shorter than finishing several simultaneous jobs 
competing for the resources. 

Dijkstra’s algorithm is principally the A* algorithm with h(n)=0, that is, it does not use any 
estimate of the “future” as guide, it merely looks at the “past”. Naturally, h(n)=0 is an 
estimate that never over-estimates the true value, and it guarantees monotonicity. 

For both algorithms, the node weights must be non-negative. 

The tighter (closer to the true value) the estimate, the less nodes are investigated by A*, so 
that when h1(n) ≤ h2(n), then A* examines less nodes with h2(n). If the estimate is so tight that 
it is equal to the true value, A* will go directly to the goal without examining any other nodes 
than those along that path. If the estimate over-estimates (that is, is larger than the true 
value) at some node (that is examined) then A* is not guaranteed to find the optimal path. 

Task 4. Linear Programming 

We have formulated LP-problems in a "standard form", looking like 
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Regard the following LP-formulation 
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a) Formulate this as an LP-problem in the standard form given above.  (2p) 

b) Solve it.  (3p) 

c) Is the feasible set bounded or unbounded? (1p) 

We know that max -f = min f, so we rewrite the objective as 1 2 3 1 2 3( )x x x x x x       .  

We need also to include slack and surplus variables to get equalities. For convenience we 
also rewrite b to have only non-negatives. So we get: 
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Writing this in matrix form is trivial. 

Note that the constraint 1 3 4x x     is equivalent to 1 3 4x x  . This constraint together 

with the constraint 1 2 4x x   means that the feasible set does not contain (0,0,0). 

The optimal value of the objective function is 4, which occurs when x1 = 4, x2 = 0, x3 = 0. 

Note that -2x2-x3 = -(2x2+x3) is always negative (when the xi are non-negative) and so can be 
removed from the problem formulation. So we can actually solve the much simpler problem 
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which quite obviously has the above solution. Clearly, the feasible set is unbounded. 

Task 5. Linear and Integer Programming Theory 

Regard the following four optimization problems: 
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The *
iz  (for  1, 2,3, 4i ) are the different optimal objective function values. 

a) Determine the relative relationship (in magnitude) between the *
iz  (for  1, 2,3, 4i ).  

Note that it may not be possible to relate all of them to each other.  (2p) 

b) Assume that A is totally uni-modular and that b is integer, then do the same as in a). (2p) 

The least constrained problem is the 2nd one, so that *
2z  has potentially the largest value. The 

most constrained problem is the 4th one, so this has potentially the smallest value. As for the 
1st and 3rd problems, we cannot say much about their relative magnitudes, except that they 
fall in-between the solutions to the 2nd and 4th problems. Thus we have 
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When A is totally uni-modular and b is integer, the solutions to the 1st and 2nd problems are 
integer and so must be the same as the solutions to the 4th and 3rd problems, respectively. 
Thus we have that * * * *

4 1 2 3z z z z   . 



 

 


