
Embedded Control Systems

Exam 2017-08-17

08:30 � 12.30: M Building

Course code: SSY190

Teachers: Knut Åkesson

The teacher will visit examination halls twice to answer questions. This will
be done approximately one hour after the examination started and one hour
before it ends.

The exam comprises 22 credits. At least 10 credits are needed for passing
the written exam. The �nal grade is set by the rules published at the course
syllabus.

Solutions and answers should be complete, written in English and be unam-
biguously and well motivated. In the case of ambiguously formulated exam
questions, the suggested solution with possible assumptions must be moti-
vated. The examiner retains the right to accept or decline the rationality of
assumptions and motivations.

Exam results will be reported in Ladok. The results are open for review
2017-09-07 12:30-13:30 at the department.

No aids are allowed on the written exam except:

• Pen and a rubber

• Standard pocket calculator (no hand computer). Erased memory.

• Essential C, Nick Parlante. No comments are allowed in the report.

• Dictionary from/to your native language to/from English

1

a) Explain the di�erence between soft and hard real-time systems.
(1p)

b) Describe potential problems with stability analysis of hybrid systems.
(1p)

c) Describe the general concepts of a real-time operating system, i.e. sched-
uler, tasks, priorities, context switches.

(2p)

d) Describe which problems bumpless-transfer solves and how it can be im-
plemented.

(2p)

1

2

Consider the program on the following page that has three tasks. One task
is increasing a counter by one 10 million times (1e7), the second task is
decreasing the same counter by one 10 million times. The print task prints
the �nal value of the counter when both tasks have �nished. The counter is
initially (before the two tasks start to run) set to zero. Since the two tasks
have the sume number of increments and decrements it would be natural
to expect that the �nal value printed would be 0. However, running this
program multiple times results in di�erent number being printed.

a) Explain how the counter can end up having a di�erent value after both
the two counter tasks have �nished their work, describe the name of this
phenomena and describe by refering to how a real-time operating system
operates what might cause this behavior.

(2p)

b) Suggest how to modify this concurrent program to make sure the program
always compute the expected output, i.e., the �nal value the counter
should be 0. Constraints: You can add but not remove any code/task.
The two increase and decrease tasks should execute with the same priority
and concurrently. Note, you only have to hand in the changes to this
program. You might use the line-numbers to identify where you add
code.

(2p)

Comments: The data type int is large enough (64-bits) for it to not over-
�ow/under�ow. The keyword volatile is used to disable the compiler from
optimizing the code. In this simple case an optimizing compiler will notice
that the for-loop for increasing/decreasing the value of the counter is not
really necessary, instead it might emit code that assign he �nal value to the
counter directly. However, by adding volatile we force the compiler to emit
code that will do all iterations in the for-loop.

2

1 xTaskHandle incTaskHandle ;
2 xTaskHandle decTaskHandle ;
3 xTaskHandle printTaskHandle ;
4
5 SemaphoreHandle_t incTaskDone ;
6 SemaphoreHandle_t decTaskDone ;
7
8 volat i le int counter = 0 ;
9

10 void increaseCounterTask (void ∗pvParameters)
11 {
12 int i ;
13 for (i = 0 ; i < 1e7 ; i++)
14 {
15 counter = counter + 1 ;
16 }
17 xSemaphoreGive (incTaskDone) ;
18 vTaskDelete (incTaskHandle) ;
19 }
20
21 void decreaseCounterTask (void ∗pvParameters)
22 {
23 int i ;
24 for (i = 0 ; i < 1e7 ; i++)
25 {
26 counter = counter − 1 ;
27 }
28 xSemaphoreGive (decTaskDone) ;
29 vTaskDelete (decTaskHandle) ;
30 }
31
32 void printFinalCounterTask (void ∗pvParameters)
33 {
34 xSemaphoreTake (incTaskDone , portMAX_DELAY) ;
35 xSemaphoreTake (decTaskDone , portMAX_DELAY) ;
36 p r i n t f (" Fina l value : %d\n" , counter) ;
37 vTaskDelete (printTaskHandle) ;
38 }
39
40 int main (void)
41 {
42 incTaskDone = xSemaphoreCreateBinary () ;
43 decTaskDone = xSemaphoreCreateBinary () ;
44 xTaskCreate (increaseCounterTask , " IncTask" , configMINIMAL_STACK_SIZE , NULL, 1 , &incTaskHandle) ;
45 xTaskCreate (decreaseCounterTask , "DecTask" , configMINIMAL_STACK_SIZE , NULL, 1 , &decTaskHandle) ;
46 xTaskCreate (printFinalCounterTask , "PrintTask" , configMINIMAL_STACK_SIZE , NULL, 1 , &printTaskHandle) ;
47 vTaskStartScheduler () ;
48 for (; ;) ;
49 }

3

3

Consider the C-program below.

#include <s td i o . h>

void swap (int ∗a , int ∗b)
{

. . .

. . .

. . .
}

int main ()
{

int x = 10 ;
int y = 20 ;

swap(&x , &y) ;

p r i n t f ("After Swapping\nx = %d\ny = %d\n" , x , y) ;

return 0 ;
}

Write C-code that implement the swap function, the swap function should
make sure that values of x and y have swapped after returning from the swap
function and discuss the following for variables x, y, a, and b.

• Explain where they are allocated in memory.

• Explain when it is safe to refer to them.

• Explain what is stored in the variables.

(2p)

4

4

Consider the set of tasks below.

Task name Period Deadline Execution time
TA 3 3 1
TB 5 5 2
TC 2 2 0.5

a) Assign a priority to each task according to the Rate Monotonic Scheduling
(RMS) principle, and check whether the tasks will meet their deadlines
using the approximate, utilization-based schedulability condition.

(1p)

b) Check whether the task set is schedulable using response time analysis
and assuming RMS priority assignment.

(2p)

c) Draw the execution schedule for the task set assuming RMS and that all
tasks are released simultaneously. Draw the schedule for the full hyper-
period, i.e. until the schedule will repeat itself.

(2p)

d) Is the task set schedulable using the Earliest Deadline First (EDF) schedul-
ing algorithm?

(1p)

5

5

Determine for each of the following pairs of linear temporal logic expressions
whether they are equivalent or not. Justify your answer with an explanation.

a) G(p ∧ q) ¬F(¬p ∨ ¬q)
b) Gp⇒ Fq pU(q ∨ ¬p)
c) FGp⇒ GFq G(pU (q ∨ ¬p))
d) GFp⇒ GFq G(p⇒ Fq)

(4p)

Good Luck!

6

Formula sheet

Liu-Layland schedulability test

n∑
i=1

Ci

Ti

≤ n(21/n − 1)

Response-time analysis

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj

7

