Discrete Event Systems Course code: SSY165

Examination 2015-08-25

Time: 8:30-12:30,
Location: M-building
Teacher: Bengt Lennartson, phone 3722
The examination includes 25 points, where grade three requires 10 points, grade four 15 points and grade five 20 points.

The result of this examination is announced and inspection of the grading is done on Tuesday September 8 and Wednesday September 9, 12:30-13:00 at the division.

Allowed aids at the examination:

- Standard mathematical tables such as Beta, see also formulas in the end of this examination.
- Pocket calculator.

Good luck!

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics
Chalmers University of Technology

Show the following set implication by relations based on predicate expressions

$$
A \subseteq B \Rightarrow(A \backslash D) \cap C \subseteq B \cap C \cap \sim D
$$

2
Consider the following Petri net where the enabling of the transitions are dependent on the logical variables u and v.

Generate a state space model

$$
x^{+}=f(x, u, v)
$$

where each state variable x_{i} represents the number of tokens in corresponding place. The non-linear function f may include inequality and propositional logical operators.

Show that the following two automata are structurally equivalent. This means that for all strings s in the langauge generated by the two automata, there is a unique one-to-one mapping between corresponding states in the automata reached by the same string s.

4
Generate a controllable and nonblocking supervisor, by the fix point algorithm presented in the lecture notes, for the plant P given below. Assume that the event c is uncontrollable, while the other events are controllable. The specification $S p=P$ with the additional demand that q_{8} is a forbidden state and q_{10} is the only marked state. Show the resulting automaton after each Backward_Reachability computation.

A number of non repeated operations need to be coordinated. Generally, an operation O_{k} starts when the event s_{k} occurs and it is completed when the event c_{k} is fired. Six operations $O_{1}, \ldots Q_{6}$ are going to be executed. In principle all operations can be executed concurrently, except for a couple of restrictions between the operations that are shown in the figure below. The operation sequences are executed from top to bottom, but additional preconditions are included above some of the operation names $\left(O_{k}^{f}\right.$ means final state for operation O_{k}). This implies that for instance O_{2} in the left sequence must wait until both O_{1} and O_{5} have been completed. Furthermore, the middle sequence specifies that O_{2} also must wait until O_{3} has been completed.

a) Formulate a Petri net that specify a coordination between the different operations such that the given operation restrictions are satisfied.
b) Formulate an alternative modular model, composed of a number of automata synchronized by common events, that specify the same behavior as in a).
c) Show that the final state, where all operations have been completed, is reachable, by giving one string of events that is included in the language generated by the Petri net in a) and the automata models in b). A correct solution of a) and b) means of course that they generate the same language.

6

To be able to show that the closed loop system $P \| S$ is controllable if and only of the supervisor S is controllable, the following result is useful

$$
L_{A} \Sigma \cap L_{B} \Sigma=\left(L_{A} \cap L_{B}\right) \Sigma
$$

where L_{A} and L_{B} are languages, and Σ is a set of events (strings of length one).
a) Show that the language intersection/concatenation expressions above are equal. According to Beta (Math Handbook) $L_{1} L_{2}=\left\{s_{1} s_{2} \mid s_{1} \in L_{1} \wedge s_{2} \in L_{2}\right\}$
b) Assume that the alphabets $\Sigma_{P}=\Sigma_{S}$, and show that the closed loop system $P \| S$ is controllable with respect to the plant, if and only of the supervisor S is controllable also with respect to the plant, i.e.

$$
L(P \| S) \Sigma_{u} \cap L(P) \subseteq L(P \| S) \Leftrightarrow L(S) \Sigma_{u} \cap L(P) \subseteq L(S)
$$

The following additional results are then required:

1. $L(P \| S)=L(P) \cap L(S)$ when $\Sigma_{P}=\Sigma_{S}$
2. $A \cap B \subseteq C \cap B \Leftrightarrow A \cap B \subseteq C$
3. $\left(L(P) \Sigma_{u} \cap L(P)\right) \cap\left(L(S) \Sigma_{u} \cap L(P)\right) \subseteq L(S) \Leftrightarrow L(S) \Sigma_{u} \cap L(P) \subseteq L(S)$

7

A machine has one operating state q_{1} and one broken (idle) state q_{2}. The conditional transition probabilities are given in the transition probability matrix

$$
\mathcal{P}=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.4 & 0.6
\end{array}\right]
$$

a) Draw a state transition diagram for this discrete-time Markov chain.
b) Calculate the state probability after one time instant when the initial state is q_{1} (the machine is working), i.e. calculate $p\left(t_{1}\right)$ when $p\left(t_{0}\right)=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
c) Calculate the stationary state probability $p=\left[\begin{array}{ll}p_{1} & p_{2}\end{array}\right]$ (note that the sum of the two probabilities is equal one).

Tabell 1.1: Equivalence relations.

E_{1}	$\neg \neg p \Leftrightarrow p$		
E_{2}	$\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$	E_{3}	$\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$
E_{4}	$p \vee q \Leftrightarrow q \vee p$	E_{5}	$p \wedge q \Leftrightarrow q \wedge p$
E_{6}	$p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r$	E_{7}	$p \wedge(q \wedge r) \Leftrightarrow(p \wedge q) \wedge r$
E_{8}	$p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$	E_{9}	$p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$
E_{10}	$p \vee p \Leftrightarrow p$	E_{11}	$p \wedge p \Leftrightarrow p$
E_{12}	$p \vee \mathbf{F} \Leftrightarrow p$	E_{13}	$p \wedge \mathbf{T} \Leftrightarrow p$
E_{14}	$p \vee \mathbf{T} \Leftrightarrow \mathbf{T}$	E_{15}	$p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$
E_{16}	$p \vee \neg p \Leftrightarrow \mathbf{T}$	E_{17}	$p \wedge \neg p \Leftrightarrow \mathbf{F}$
E_{18}	$p \vee(p \wedge q) \Leftrightarrow p$	E_{19}	$p \wedge(p \vee q) \Leftrightarrow p$
E_{20}	$p \rightarrow q \Leftrightarrow \neg p \vee q$	E_{21}	$\neg(p \rightarrow q) \Leftrightarrow p \wedge \neg q$

Tabell 1.2: Implication relations.

I_{1}	$p \wedge q \Rightarrow p$	I_{2}	$p \wedge q \Rightarrow q$
I_{3}	p	$\Rightarrow p \vee q$	I_{4}

$$
\begin{array}{r}
A \| B=\left\langle Q^{A} \times Q^{B}, \Sigma^{A} \cup \Sigma^{B}, \delta,\left\langle q_{i}^{A}, q_{i}^{B}\right\rangle, Q_{m}^{A} \times Q_{m}^{B},\left(Q_{x}^{A} \times Q^{B}\right) \cup\left(Q^{A} \times Q_{x}^{B}\right)\right\rangle \\
\quad \delta\left(\left\langle q^{A}, q^{B}\right\rangle, \sigma\right)= \begin{cases}\delta^{A}\left(q^{A}, \sigma\right) \times \delta^{B}\left(q^{B}, \sigma\right) & \sigma \in \Sigma^{A} \cap \Sigma^{B} \\
\delta^{A}\left(q^{A}, \sigma\right) \times\left\{q^{B}\right\} & \sigma \in \Sigma^{A} \backslash \Sigma^{B} \\
\left\{q^{A}\right\} \times \delta^{B}\left(q^{B}, \sigma\right) & \sigma \in \Sigma^{B} \backslash \Sigma^{A}\end{cases}
\end{array}
$$

