Introduction to Discrete Event Systems Course code: SSY165, ESS200

Examination 2010-10-21

Time: 14:00-18:00,

Location: H-building

Teacher: Bengt Lennartson, phone 3722
The examination includes 25 points, where grade three requires 10 points, grade four 15 points and grade five 20 points.

The result of this examination will be announced latest on Thursday November 4 on the notice board of the division, at the entrance in the south east corner on floor 5 of the E-building. Inspection of the grading is done on Thursday November 4 and Friday November 5 at 12:30-13:00.

Allowed aids at the examination:

- Standard mathematical tables such as Beta, see also formulas in the end of this examination.
- Pocket calculator.

Good luck!

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics
Chalmers University of Technology

Show the following set equivalence by relations based on predicate expressions

$$
B \backslash(B \backslash(A \cup D)) \subseteq B \cap C \Leftrightarrow(A \cap B) \cup(B \cap D) \subseteq C
$$

2
Two discrete event subsystems P_{1} and P_{2} are modeled by the following formal languages

$$
\begin{aligned}
& L\left(P_{1}\right)=\overline{(a(b+c+d) e)^{*}} \\
& L\left(P_{2}\right)=\overline{(a b e+a c e)^{*}}
\end{aligned}
$$

a) Generate an automaton for the synchronized system $P_{1} \| P_{2}$, both when $d \in \Sigma_{P_{2}}$ and $d \notin \Sigma_{P_{2}}$.
b) Generate the formal language for the synchronized system $P_{1} \| P_{2}$ and show that

$$
L\left(P_{1} \| P_{2}\right)=L\left(P_{1}\right) \cap L\left(P_{2}\right)
$$

when $d \in \Sigma_{P_{2}}$ but not for the case when $d \notin \Sigma_{P_{2}}$.
c) For the case where $d \notin \Sigma_{P_{2}}$, modify the language for $L\left(P_{2}\right)$ by including $d \in \Sigma_{P_{2}}$ such that the synchronized system $P_{1} \| P_{2}$ gets the same behavior as before, but now also $L\left(P_{1} \| P_{2}\right)=L\left(P_{1}\right) \cap L\left(P_{2}\right)$.

Consider a Petri net with two places and two transitions, where the incidence matrix A^{+}, defining the weights of the arcs between the input transitions and their output places, is

$$
A^{+}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

the incidence matrix A^{-}, defining the weights of the arcs between the input places and their output transitions, is

$$
A^{-}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and the initial marking vector

$$
m_{0}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}
$$

a) Generate a Petri net based on the given matrix information.
b) Show that the number of tokens in one of the places can increase unboundedly by evaluating the corresponding reachability graph.
c) Add an additional so called control place in the Petri net to avoid that the number of tokens in any of the two places can be more than one. Verify this result by evaluating the reachability graph for the modified Petri net.

4

Generate a controllable and nonblocking supervisor for a plant P where the language

$$
L(P)=\overline{a(c+d b(c+d))+c d}
$$

and the specification S_{p} is given by the marked language

$$
L_{m}(S p)=a(c+d b c)+c d
$$

Assume that the event d is uncontrollable, while the other events are controllable.

Generate a maximal permissive supervisor for the plant P given below, where all events are assumed to be controllable. The specification $S p=P$ with the additional demand that q_{3} is a forbidden state and q_{6} is the only marked state. Observe that the plant has a nontraditional behavior in the sense that execution of the event c in state q_{2} means that the system will reach either the forbidden state q_{3} or the acceptable state q_{5}. The actual choice cannot be controlled by the supervisor, only that the plant is moving to either q_{3} or q_{5}. Give a clear motivation for your suggested supervisor.

6

Consider two cylinders A and B where cylinder A achieves a clamping of a product in its one position, while cylinder B performs a drilling operation in its one position. Cylinder A is equipped with sensors y_{0}^{A} and y_{1}^{A} measuring its zero and one positions respectively. The piston rod in the cylinder moves forward when $u^{A}:=1$ and returns when $u^{A}:=0$. Cylinder B has corresponding sensor signals y_{0}^{B} and y_{1}^{B} and control signal u^{B}. Assume the following sequence:

1. the cylinders are assumed to be in their zero (home) positions when a new product arrives and an operator push the start button $s=1$,
2. the piston rod in cylinder A moves out and fixates the product,
3. the piston rod in cylinder B moves out and a drilling operation is performed (the drilling operation starts automatically when $u^{B}=1$),
4. the piston rod in cylinder B moves back after the drilling operation when $y_{1}^{B}=1$,
5. the piston rod in cylinder A moves back, which releases the product that is finally removed by the operator.
a) Formulate an extended finite automaton model which generates the control sequence defined above based on the available sensor signals. Include a repeated loop behavior.
b) Generate a state space model

$$
\begin{array}{r}
x^{+}=f(x, y) \\
u=g(x, y)
\end{array}
$$

where the vector y includes all sensor signals, u desired control signals and x the internal state vector for the controller.

Table 1.1 Equivalence relations.

E_{1}	$\neg \neg p \Leftrightarrow p$		
E_{2}	$\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$	E_{3}	$\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$
E_{4}	$p \vee q \Leftrightarrow q \vee p$	E_{5}	$p \wedge q \Leftrightarrow q \wedge p$
E_{6}	$p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r$	E_{7}	$p \wedge(q \wedge r) \Leftrightarrow(p \wedge q) \wedge r$
E_{8}	$p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$	E_{9}	$p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$
E_{10}	$p \vee p \Leftrightarrow p$	E_{11}	$p \wedge p \Leftrightarrow p$
E_{12}	$p \vee \mathbf{F} \Leftrightarrow p$	E_{13}	$p \wedge \mathbf{T} \Leftrightarrow p$
E_{14}	$p \vee \mathbf{T} \Leftrightarrow \mathbf{T}$	E_{15}	$p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$
E_{16}	$p \vee \neg p \Leftrightarrow \mathbf{T}$	E_{17}	$p \wedge \neg p \Leftrightarrow \mathbf{F}$
E_{18}	$p \vee(p \wedge q) \Leftrightarrow p$	E_{19}	$p \wedge(p \vee q) \Leftrightarrow p$
E_{20}	$p \rightarrow q \Leftrightarrow \neg p \vee q$	E_{21}	$\neg(p \rightarrow q) \Leftrightarrow p \wedge \neg q$

Table 1.2 Implication relations.

I_{1}	$p \wedge q \Rightarrow p$	I_{2}	$p \wedge q \Rightarrow q$
I_{3}	$p \Rightarrow p \vee q$	I_{4}	$q \Rightarrow p \vee q$
I_{5}	$\neg p \Rightarrow p \rightarrow q$	I_{6}	$q \Rightarrow p \rightarrow q$
I_{7}	$\neg(p \rightarrow q)$	$\Rightarrow p$	I_{8}
	$\neg(p \rightarrow q)$	$\Rightarrow \neg q$	

$$
\begin{aligned}
A \| B= & \left\langle Q^{A} \times Q^{B}, \Sigma^{A} \cup \Sigma^{B}, \delta,\left\langle q_{i}^{A}, q_{i}^{B}\right\rangle, Q_{m}^{A} \times Q_{m}^{B},\left(Q_{x}^{A} \times Q^{B}\right) \cup\left(Q^{A} \times Q_{x}^{B}\right)\right\rangle \\
& \delta\left(\left\langle q^{A}, q^{B}\right\rangle, \sigma\right)= \begin{cases}\delta^{A}\left(q^{A}, \sigma\right) \times \delta^{B}\left(q^{B}, \sigma\right) & \sigma \in \Sigma^{A} \cap \Sigma^{B} \\
\delta^{A}\left(q^{A}, \sigma\right) \times\left\{q^{B}\right\} & \sigma \in \Sigma^{A} \backslash \Sigma^{B} \\
\left\{q^{A}\right\} \times \delta^{B}\left(q^{B}, \sigma\right) & \sigma \in \Sigma^{B} \backslash \Sigma^{A}\end{cases}
\end{aligned}
$$

Solution to examination in LDES 101021

$$
\begin{aligned}
\text { 1. } & B \backslash(B \backslash(A \cup D)) \subseteq B \cap C \Leftrightarrow(A \cap B) \cup(B \cap D) \subseteq C ? \\
& p_{B}(x) \wedge \neg\left(p_{B}(x) \wedge \neg\left(p_{A}(x) \vee p_{D}(x)\right) \rightarrow p_{B}(x) \wedge p_{C}(x) \Leftrightarrow\right. \\
\neg & \left(p_{B}(x) \wedge\left(\neg p_{B}(x) \vee\left(p_{A}(x) \vee p_{D}(x)\right)\right) \vee\left(p_{B}(x) \wedge p_{C}(x)\right) \Leftrightarrow\right. \\
\neg & {[\underbrace{\left(p_{B}(x) \wedge \neg p_{B}(x)\right)}_{F} \vee\left(p_{B}(x) \wedge\left(p_{A}(x) \vee p_{D}(x)\right)\right)] \vee\left(p_{B}(x) \wedge p_{C}(x)\right) } \\
& \neg p_{B}(x) \vee \neg\left(p_{A}(x) \vee p_{D}(x)\right) \vee\left(p_{B}(x) \wedge p_{C}(x)\right) \Leftrightarrow \\
& \neg\left(p_{A}(x) \vee p_{D}(x)\right) \vee\left(\left(\neg p_{B}(x) \vee p_{B}(x)\right) \wedge\left(\neg p_{B}(x) \vee p_{C}(x)\right)\right) \\
& \neg\left(p_{A}(x) \vee p_{D}(x)\right) \vee p_{B}(x) \vee p_{C}(x) \Leftrightarrow \\
& \neg\left(\left(p_{A}(x) \vee p_{D}(x)\right) \wedge p_{B}(x)\right) \vee p_{C}(x) \Leftrightarrow \\
& \neg\left(\left(p_{A}(x) \wedge p_{B}(x)\right) \vee\left(p_{D}(x) \wedge p_{B}(x)\right)\right) \vee p_{C}(x) \Leftrightarrow \\
& \left(p_{A}(x) \wedge p_{B}(x)\right) \vee\left(p_{B}(x) \wedge p_{D}(x)\right) \rightarrow p_{C}(x)
\end{aligned}
$$

The first and last predicate erptessions are equivalent and they comerpond to the set expressions, which proofs the equivalence on the first line.
2.
a) P?

$P_{1} \| P_{2} d \in \sum_{p_{2}}$
$P_{1} \| P_{2} \quad d \notin \sum p_{2}$

b)

$$
\begin{aligned}
& d \in \sum p_{2} \angle\left(p_{1} \| p_{2}\right)=L\left(p_{2}\right) \\
& \angle\left(p_{1}\right) \cap L\left(p_{2}\right)=\overline{(a b e+a c e+a d e)^{x} \cap \overline{(a b e+a c e)^{*}}} \\
&=L\left(p_{2}\right) \\
& d \notin \sum_{p_{2}} \quad L\left(p_{1} \| p_{2}\right)=\overline{a((b+c) e a)^{*} d}
\end{aligned}
$$

$$
P_{1} \| P_{2}
$$

$$
\begin{aligned}
& \angle\left(P_{1}\right) \cap \angle\left(P_{2}\right)=\overline{(a b e+a c e+a d e)^{*}} \cap \overline{\left(a d^{2} b e+a d^{*} c e\right)^{*}} \\
& =a(b e a+c e a)^{2} d=\angle\left(P_{1} \| P_{2}\right)
\end{aligned}
$$

3.

a)

b)
$t_{2}\left(\begin{array}{c}(10)^{\top} \\ 1 t_{1} \\ (11)^{\top}\end{array}\right.$

$$
A=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]
$$

$$
m^{+}=m+\underbrace{\left(A^{+}-A^{-}\right)}_{A} s_{j} j_{\text {selection }} j=1,2
$$ selection

vector

Infinite number of t transitions and a limited number of $t_{?}$
 transitions \Rightarrow infinite number of tokens in pr.

$$
t_{2}\left(\begin{array}{c}
(1001)^{\top} \\
1 \begin{array}{l}
1
\end{array} \\
(1) 0)^{\top}
\end{array}\right.
$$

4.

$S_{0}=P \| S_{p}$

Resulting supotrisor

$$
\angle(s)=\overline{c d}
$$

5.

$$
S_{0}=P \| S_{p}
$$

US = uncontrollable state in iteration k
$b s_{h}=$ blocking state in iteration 4

When the plant is in state 92 and c is executed the plant may transfer to the forbidden state 73 .

Thus state que must be excluded from the super,ison although the event c is controllable.
Resulting supperisur is then
$s \times 0 \xrightarrow{b}, 0 \xrightarrow{d}(0$
6. a)

$$
y_{0}^{A}=1\left\{\begin{array}{l}
\left.q_{2}\right\}_{1} y_{1}^{A}=1 / u^{B}:=1 \\
q_{3} 0 \\
q_{4} y_{1}^{B}=1 / u^{B}:=0 \\
y_{q_{5}}^{B}=1 / u^{A_{1}}=0
\end{array}\right.
$$

b)

$$
\left.\begin{array}{l}
x_{1}^{+}=\left(x_{5} \wedge y_{0}^{A}\right) \vee\left(x_{1} \wedge \neg 5\right) \\
x_{2}^{+}=\left(x_{1} \wedge S\right) \vee\left(x_{2} \wedge \neg y_{1}^{A}\right) \\
x_{3}^{+}=\left(x_{2} \wedge y_{1}^{A}\right) \vee\left(x_{3} \wedge \neg y_{1}^{B}\right) \\
x_{4}^{+}=\left(x_{3} \wedge y_{1}^{B}\right) \vee\left(x_{4} \wedge \neg y_{0}^{B}\right) \\
x_{5}^{+}=\left(x_{4} \wedge y_{0}^{B}\right) \vee\left(x_{5} \wedge \neg y_{0}^{A}\right) \\
u^{A}=x_{2} \vee x_{3} \vee x_{4} \quad y=\left[\begin{array}{l}
S \\
y_{0}^{A} \\
y_{1}^{A} \\
y_{0}^{B} \\
y_{1}^{B}
\end{array}\right] u=\left[\begin{array}{l}
u^{A} \\
u^{B}
\end{array}\right] \\
u^{B}=x_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] .
$$

