Introduction to Discrete Event Systems Course code: SSY165, ESS200

Examination 2008-10-23

Time: 8:30-12:30,
Lokal: V-building
Teacher: Tord Alenljung, phone 1799
The examination includes 25 points, where grade three requires 10 points, grade four 15 points and grade five 20 points.

The result of this examination will be announced latest on Thursday November 6 on the notice board of the division, at the entrance in the south east corner on floor 5 of the E-building. Inspection of the grading is done on Thursday November 6 and Friday November 7 at 12:30-13:00.

Allowed aids at the examination:

- Standard mathematical tables such as Beta, see also formulas in the end of this examination.
- Pocket calculator.

Good luck!

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics
Chalmers University of Technology

1
Show that the following logical expression is a tautology.

$$
(p \rightarrow q) \wedge(\neg q \vee p) \vee((p \vee q) \wedge(p \vee q \vee \neg p))
$$

2

Show the following set equivalence by equivalence relations based on predicate expressions

$$
A \cap B \subseteq B \cap C \Leftrightarrow A \cap B \subseteq C
$$

3

Three robots P_{1}, P_{2} and P_{3} share a common zone. When a robot P_{i} enters the common zone the event a_{i} occurs. When it leaves the zone the event b_{i} occurs.
a) Formulate an automaton model for robot P_{i} including the events a_{i} and b_{i} and give the formal language $L\left(P_{i}\right)$ for robot P_{i}.
b) Generate a Petri net including the three robots and a mutual exclusion place which guarantees that only one robot at a time is in the common zone.
c) The Petri net model represents a closed loop system. Identify based on this net a supervisor S, which together with the robot models P_{1}, P_{2} and P_{3} generates the closed loop system $P_{1}\left\|P_{2}\right\| P_{3} \| S$ corresponding to the Petri net model above.
d) Generate the reachability graph for the Petri net in b), and verify that the states where more than one robot is in the common zone is not reachable.

4
Consider a system with binary signals y, v and z. The event $y \uparrow$ occurs when y raises from zero to one and the event $y \downarrow$ occurs when it goes back to zero. The same notation is valid for v and z. The initial values for the signals are assumed to be zero.

Two subsystems A and B model signal behaviors given by the following two marked languages

$$
\begin{aligned}
L_{m}(A) & =((y \uparrow y \downarrow+v \uparrow v \downarrow) e)^{*} \\
L_{m}(B) & =((y \uparrow y \downarrow+z \uparrow z \downarrow) e)^{*}
\end{aligned}
$$

and their corresponding non-marked languages $L(A)=\overline{L_{m}(A)}$ and $L(B)=\overline{L_{m}(B)}$. Observe the common event e which is included to model a synchronized reset action back to the initial state. This reset action does not depend on any external signal and is only included here to model the synchronization between the two subsystems.
a) Generate corresponding automata A and B and a Petri net for the composed system $A \| B$.
b) Formulate boolean state equations representing the composed system $A \| B$.
c) Assume now that the signal value $z=1$ is a forbidden state in subsystem B. Identify all states in the composed system $A \| B$ that are forbidden.
d) Also identify the resulting blocking states in the composed system and the resulting automaton for the nonblocking composed system when the forbidden signal value $z=1$ is taken into account.

5

Consider a plant P with a formal language $L(P)=\overline{a(b+d)+c d}$ and two supervisors S_{1} and S_{2} with formal languages $L\left(S_{2}\right)=\overline{a b+c d}$ and $L\left(S_{2}\right)=\overline{c d}$. Assume that the event d is uncontrollable that is $\Sigma_{u}=\{d\}$.
a) Show that the supervisor S_{1} is uncontrollable, while S_{2} is controllable, by applying the language controllability definition, which says that a supervisor S is controllable with respect to a plant P if

$$
\begin{equation*}
L(S) \Sigma_{u} \cap L(P) \subseteq L(S) \tag{3p}
\end{equation*}
$$

b) Give the corresponding automata for the languages $L(P), L\left(S_{1}\right)$ and $L\left(S_{2}\right)$ and explain based on these automata why S_{1} is not controllable.

Two people named A and B are playing a simple game. A number of sticks are lain out on the ground and the players take alternately one or two sticks. Note that at least one stick must be picked. The player that ends up with the last stick has lost the game. Player A is always the one that starts picking sticks.
a) Model this game by an automaton, with an initial number of five sticks. Hint: identify the events and the states.
b) Introduce a marked state specifying that player A is to win and player B is to loose. Remember that the player left with only the final stick to pick, is the loser.
c) Generate a supervisor that guarantees that player A wins the game. Note that the set of uncontrollable events must first be decided.

Table 1.1 Equivalence relations.

Table 1.2 Implication relations.

I_{1}	$p \wedge q$	$\Rightarrow p$	I_{2}	$p \wedge q$
I_{3}	$\Rightarrow p \vee q$	I_{4}	q	
I_{5}	$\neg p$	$\Rightarrow p \rightarrow q$	I_{6}	q
I_{7}	$\neg(p \rightarrow q)$	$\Rightarrow p$	I_{8}	$\neg(p \rightarrow q)$
I_{9}	$\neg p \wedge(p \vee q)$	$\Rightarrow q$	I_{10}	$p \wedge(p \rightarrow q)$
I_{11}	$\neg q \wedge(p \rightarrow q)$	$\Rightarrow \neg p$	I_{12}	$(p \rightarrow q) \wedge(q \rightarrow r)$
I_{13}	$(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)$	$\Rightarrow r$		

$$
\begin{aligned}
A \| B= & \left\langle Q^{A} \times Q^{B}, \Sigma^{A} \cup \Sigma^{B}, \delta,\left\langle q_{i}^{A}, q_{i}^{B}\right\rangle, Q_{m}^{A} \times Q_{m}^{B},\left(Q_{x}^{A} \times Q^{B}\right) \cup\left(Q^{A} \times Q_{x}^{B}\right)\right\rangle \\
& \delta\left(\left\langle q^{A}, q^{B}\right\rangle, \sigma\right)= \begin{cases}\delta^{A}\left(q^{A}, \sigma\right) \times \delta^{B}\left(q^{B}, \sigma\right) & \sigma \in \Sigma^{A} \cap \Sigma^{B} \\
\delta^{A}\left(q^{A}, \sigma\right) \times\left\{q^{B}\right\} & \sigma \in \Sigma^{A} \backslash \Sigma^{B} \\
\left\{q^{A}\right\} \times \delta^{B}\left(q^{B}, \sigma\right) & \sigma \in \Sigma^{B} \backslash \Sigma^{A}\end{cases}
\end{aligned}
$$

Solution to Introduction to 2081022 Discrete Event Systems Examination 081023
1.

$$
\begin{aligned}
& (p \rightarrow q) \wedge(\neg q \vee p) \vee((p \vee q) \wedge(p \vee q \vee \neg p)) \Leftrightarrow \\
& ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) \vee((p \vee q) \wedge(p \vee \neg p \vee q)) \Leftrightarrow \\
& (\neg p \wedge \neg q) \vee(\underbrace{q}_{T} \wedge q) \vee(\neg p \wedge p) \vee(q \wedge p) \vee(p \vee q) \wedge T) \Leftrightarrow \\
& (p \vee q) \vee(p \vee q) \vee(p \wedge q) \vee F \Leftrightarrow T \vee \vee(p \wedge q) \Leftrightarrow T
\end{aligned}
$$

2. $A \cap B \subseteq B \cap C \Leftrightarrow A \cap B \subseteq C$?

$$
\begin{aligned}
& p_{A}(x) \wedge p_{B}(x) \rightarrow p_{B}(x) \wedge p_{C}(x) \Leftrightarrow \neg\left(p_{A}(x) \wedge p_{B}(x)\right) \vee\left(p_{B}(x) \wedge p_{B} Q\right) \\
\Leftrightarrow & \left.\left(\neg p_{A}(x) \vee \neg p_{B}(x)\right) \vee p_{B}(x)\right) \wedge \neg\left(p_{A}(x) \wedge p_{B}(x)\right) \vee p_{C}(x) \\
\Leftrightarrow & (\neg p_{A}(x) \vee \underbrace{}_{B} \neg p_{B}(x) \vee p_{B}(x)) \wedge .\left(p_{B}(x) \wedge p_{B}(x)\right) \rightarrow p_{C}(x) \\
\Leftrightarrow & \left(\neg p_{A}(x) \vee T\right) \wedge\left(p_{A}(x) \wedge p_{B}(x)\right) \rightarrow p_{C}(x) \\
\Leftrightarrow & \left(p_{A}(x) \wedge p_{B}(x)\right) \rightarrow p_{C}(x) \quad \because A \cap B \subseteq B \cap C \Leftrightarrow A \cap B \subseteq C
\end{aligned}
$$

b)

d

SS

\because The states $\left\langle z_{1}, z_{2}, z_{3} \cdot\right\rangle$
$\left\langle z_{1}, z_{2}, u_{3} \cdot\right\rangle$
$\left\langle z_{1}, u_{2}, z_{35}\right\rangle$
$\left.\left\langle u_{1}, z_{2}, z_{3,}\right\rangle\right\rangle$ are hot reachable in
4.
a)

b) $\quad x_{i}=$ number of tokens i

$$
\begin{aligned}
& x_{1}^{+}=\left(x_{4} \wedge x_{8}\right) \vee \operatorname{initv}(x, \wedge \neg v \wedge \neg y) \\
& x_{2}^{+}=\left(x_{1} \wedge v\right) \vee\left(x_{2} \wedge v\right) \\
& x_{3}^{+}=\left(x_{1} \wedge y\right) \vee\left(x_{3} \wedge y\right) \\
& x_{4}^{+}=\left(x_{2} \wedge \neg v\right) \vee\left(x_{3} \wedge x_{6} \wedge \neg y\right) \vee\left(x_{4} \wedge \neg x_{8}\right) \\
& x_{5}^{+}=\left(x_{4} \wedge x_{8}\right) \vee \operatorname{in} t \vee\left(x_{5} \wedge \neg y \wedge \neg z\right) \\
& x_{6}^{+}=\left(x_{5} \wedge y\right) \vee\left(x_{6} \wedge y\right) \\
& x_{7}^{+}=\left(x_{5} \wedge z\right) \vee\left(x_{7} \wedge z\right) \\
& x_{8}^{+}=\left(x_{3} \wedge x_{6} \wedge \neg y\right) \vee\left(x_{7} \wedge \neg z\right) \vee\left(x_{8} \wedge \neg x_{4}\right)
\end{aligned}
$$

5 The local forbidden state in B is 9 In A the states q_{1}, 7_{2} and qu are then reachable but not 93
\because The forbidden states in All ale then $\left\langle q_{1}, q_{7}\right\rangle,\left\langle q_{2}, q_{7}\right\rangle,\left\langle q_{4}, q_{7}\right\rangle$ corresponding to the making rectors in the PN $\left.m=[10000010]^{\top} m=01000010\right]^{\top}$
d)

$$
m=[00010010]^{\top}
$$

Blocking states $\left\langle q_{2}, q_{5}\right\rangle,\left\langle q_{4}, q_{5}\right\rangle$
Nonblocking
e
system

5.

$$
\begin{aligned}
& \angle(P)=\{\varepsilon, a, a b, a d, c, c d\} \quad \Sigma_{n}=\{d\} \\
& \angle(S)=\{\varepsilon, a, a b, c, c d\} \quad \angle\left(s_{2}\right)=\{\varepsilon, c, c d\}
\end{aligned}
$$

a)
b)

$$
\begin{aligned}
& \angle(s) \sum_{n} \cap L(P)=\{\varepsilon, a, a b, c, c d\}\{d\} \cap\{\varepsilon, a, a b \\
& a d, c, c d\}=\{d, a d, a b d, c d, c d d\} \cap\{\varepsilon, a, a b, a d, c, c d\} \\
& =\{a d, c d\} \notin\{\varepsilon, a, a b, c, c d\}=\angle(s) \\
& \angle\left(s_{2}\right) \sum_{n} \cap \angle(P)=\{\varepsilon, c, c d\}\{d\} \cap \angle(P)= \\
& =\left\{d, c d, c d d \cap \angle(P)=\{c d\} c<\left(s_{2}\right)\right.
\end{aligned}
$$

$S_{2} d 0 \xrightarrow{c} \xrightarrow{d 0} 0$
6.

