
Suggested Solutions to Examination

SSY130 Applied Signal Processing

14:00-18:00, April 8, 2010

Instructions

• Responsible teacher: Tomas McKelvey, ph 8061. Teacher will visit the site of examination
at 14:45 and 16:00.

• Score from the written examination will together with course score determine the final grade
according to the Course PM.

• Solutions are published on the course home-page latest 15 noon April 12.

• Your preliminary grade is reported to you via email.

• Exam grading review will be held in the “Blue Room” on level 6 at 12:15-12:45 on April 23,
2010.

Allowed aids at exam:

• L. R̊ade and B. Westergren, Mathematics Handbook (any edition, including the old editions
called Beta).

• Any calculator

• One a4 size single page with written notes

Other important issues:

• The ordering of the questions is arbitrary.

• All solutions should be well motivated and clearly presented in order to render a full score.
Unclear presentation or adding, for the problem in questing, irrelevant information render a
reduction of the score.

• The maximum score is 52 points.
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Figure 1: Graphs for adaptive filtering problem. Left column error. Right column coefficients.

Problems

1. In Figure 1 you find 6 graphs. The 3 left graphs are the time evolution of the filtering error
signal and the 3 right graphs correspond to the filter coefficient evolution over time. Below
you find the filter updating equations for three different adaptive filtering algorithms. Which
of the error signal graphs and the filter coefficient graphs correspond to which algorithm
respectively? Motivate your choices carefully. What are the names of each of the algorithms.
(10p)

A1) Ri = 1000*eye(10);

alpha=1;

for k=Nh:1000-Nh,

e(k) = d(k) - hx(:,k)’*x(k-Nh+1:k);

K = Ri*x(k-Nh+1:k);

Rinv = (Ri - K*K’/(alpha + x(k-Nh+1:k)’*K))/alpha;

hx(:,k+1) = hx(:,k) + Ri*x(k-Nh+1:k)*e(k);
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end

A2) Ri = 0.5e-2;

for k=Nh:1000-Nh,

e(k) = d(k) - hx(:,k)’*x(k-Nh+1:k);

hx(:,k+1) = hx(:,k) + Ri*x(k-Nh+1:k)*e(k);

end

A3) Ri = 1000*eye(10);

alpha=0.8;

for k=Nh:1000-Nh,

e(k) = d(k) - hx(:,k)’*x(k-Nh+1:k);

K = Ri*x(k-Nh+1:k);

Rinv = (Ri - K*K’/(1 + x(k-Nh+1:k)’*K))/alpha;

hx(:,k+1) = hx(:,k) + Ri*x(k-Nh+1:k)*e(k);

end

Solution: A1 is RLS, A2 is LMS and A3 is RLS with forgetting factor 0.8. RLS is superior
to LMS in convergence so clearly Error 2 and Coeff 3 belong to the LMS algorithm. The
difference between RLS with and without forgetting is that the RLS without forgetting factor
will converge as the number of samples increases even in presence of noise. Since the Coeff 1
graph has some residual variations around the correct values this graph belongs to algorithm
A3. Since the coefficients vary for A3 this also leads to a higher residual variance for the
error. Graph Error 1 has less residual variance as compared to Error 3 and hence Error 1
belongs to RLS without forgetting. In conclusion:

• A1 Error 1 Coeff 2

• A2 Error 2 Coeff 3

• A3 Error 3 Coeff 1

�

2. Each cylinder in a four-stroke combustion engine provides a net torque contribution once
every second revolution, i.e. once for each 720 degrees of crank shaft revolution. In the top
graph in the figure below, 720 samples of the signal from a crankshaft mounted torque sensor
is shown. The signal has been sampled every one degree of crankshaft revolution. In the
bottom graph in the figure the 41 first bins of the 720 samples DFT are shown.
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(a) How many cylinders does the engine have? (3p)

(b) During the measurement period the engine speed variations were very small. The
average sample rate was 5879 samples per second. What was the speed of the engine
given in RPM (revolutions per minute)? (2p)

(c) The sampling of the signals in this application is not driven by a clock but instead of
an angle encoder. Discuss some signal processing challenges which arise when sampling
is not based on a clock. (5p)

Solution:

(a) After 720 degrees of crankshaft revolution the engine has made a full cycle and since
the graph covers 720 degrees and we see 5 pulses in the torque signal we conclude that
the engine has 5 cylinders. In the FFT graph we also se that the first bin with a large
energy is at bin 5 (5 per 720 degrees).

(b) Each sample corresponds to 1 degree of crankshaft revolution, 1 revolution is 360 degrees

and one minute is 60 seconds. Hence RPM = 5879/360

∗
60 = 980

(c) An engine in an automotive application is operating at varying speeds, e.g. 800 RPM -
6000 RPM. With a sampling based on crankshaft angles this means that the sampling
freuqency is varying over a large range. Anti aliasing filter design is then a challenge
since the Nyquist frequency is varying with the engine speed and the choice of (a fixed)
cut off frequency has to be a trade-off between bandwidth of the measurements and
aliasing effects. Discrete time filtering of a signal which has been sampled in a time
varying fashion also requires special considerations particularly time varying filters need
to be employed.

3. A digital signal processing system is operating at a sampling frequency of 10 kHz. A linear
phase high-pass FIR filter with unit gain in the passband and a cut-off frequency of 3 kHz
is to be designed.

(a) Determine the cut-off frequency in the unit of radians per sample. (2pt)
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(b) Design a causal FIR filter with 5 filter coefficients (N = 5) using the Fourier series
method with the specifications as above. Hint: The inverse Fourier transform for a
symmetric frequency function is given by

cn =
1

π

∫ π

0

HD(ω) cos(nω)dω

where ω is in radians per sample. (5p)

(c) A so called window function, other than the implicit rectangular window, can be used
to modify the designed filter. Explain why this technique is often employed and the
effects (both positive and negative) it has on the designed filter. (4p)

(d) Use the window (a Hanning window) defined by

wn = sin2((n + 1)π/(N + 1)); 0 ≤ n < N

and modify your filter design. (2pt)

(e) Since the filter is a high-pass filter it is natural that the amplitude function at half the
sampling frequency (the Nyquist frequency) is equal to one. Determine the amplitude
at the Nyquist frequency for your filter design. (2pt)

(f) Explain any deviation from amplitude one and suggest how to modify the filter to
obtain amplitude one at the Nyquist frequency (3pt)

Solution:

(a) ωc = 2πfc

fs
= 2π∗3

10
= 3

5
π = 1.88 rad/s

(b) Symmetric coefficients around n = 0 are obtained by inverse Fourier transform of the
desired frequency response :

cn =
1

π

∫ π

ωc

cos(nω)dω =
1

πn
[sin(nω)]

π
ωc

=
1

πn
(sin(πn) − sin(nωc)) n = 0,±1,±2

which yields

cn =







0.4 n = 0

−0.303 n = ±1

0.094 n = ±2

This impulse response is non-causal and needs to be delayed 2 samples to yield a causal
filter.

[ h0 h1 h2 h3 h4 ] = [ 0.094 −0.303 0.4 −0.303 0.094 ]

(c) The window method starts with a brick-wall design with an (implicit) infinite filter
length. The truncation to a finite length filter leads to two major effects; 1) the tran-
sition band between the stop band and pass band becomes wider and 2) ripple in the
stop band and pass band appears which limits the stop-band attenuation as well as
distorts the constant gain in the passband. The relative effect of these two properties
can be controlled by multiplying the filter coefficients with different window functions.

(d) The window is applied by element-wise multiplication hw
i = hiwi:

[ hw
0

hw
1

hw
2

hw
3

hw
4 ] = [ 0.023 −0.227 0.4 −0.227 0.023 ]

(e) |Hw(π)| = |
∑4

k=0
hw

k e−jkπ| =
∑4

k=0
hw

k (−1)k = 0.901

(f) The deviation at the Nyquist frequency has it’s origin both in the truncation of the
impulse response to a finite length and the effect of the multiplication with the Hanning
window. Since the transfer function is a linear function of the filter coefficients a
rescaling yields the desired result hf

i = hw
i /|Hw(π)|

[ hf
0

hf
1

hf
2

hf
3

hf
4
] = [ 0.026 −0.252 0.444 −0.252 0.026 ]
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4. In a signal quality monitoring system it is desired to monitor the amplitudes of the fun-
damental frequency of 50 Hz and the amplitude of the first harmonic with a frequency of
100 Hz. In the application amplitudes and phases are varying over time at a rate slower
than the fundamental frequency. Your task is to design a Kalman filtering based solution
which estimates and track both amplitudes of both signal components. We assume the signal
measured can be described as

y(n) = A sin(2π 50n∆t + ϕA) + B sin(2π 100n∆t + ϕB) + e(n)

where e(n) is zero mean white noise with a Gaussian distribution and ∆t is the sampling
interval.

(a) The amplitudes appear linear in the signal model but the phases are non-linear which
makes a direct application of the Kalman filter not possible. Show that the alternate
model

y(n) = α sin(2π 50n∆t) + β cos(2π 50n∆t) + γ sin(2π 100n∆t) + θ cos(2π 100n∆t)

is an equivalent model and how the amplitudes A and B can be derived from the
knowledge of α, β, γ and θ. (4p)

(b) Rewrite the signal model into a state-space form suitable for a direct Kalman filter
application. (5p)

(c) It is known that the amplitude of the 100 Hz signal component changes at a much
slower rate compared to the 50 Hz component. Explain how this knowledge can be
used when tuning the Kalman filter. (5p).

Solution:

(a) Defining A =
√

α2 + β2 and cos ϕA = α√
α2+β2

we obtain

A sin(t + ϕA) = α sin t + β cos t

and the result follows.

(b) The parameters to track are α, β, γ and θ and we hence put them into the state-vector

x(n) =
[
α β γ θ

]T

From the problem formulation the amplitudes are assumed to vary slowly and a simple
random walk model is suitable for the state-update equation:

x(n + 1) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

A

x(n) + w(n)

where w(n) is a zero mean random vector with covariance matrix Q1. The measurement
equation is then derive d directly from the signal model as

y(n) = Cnx(n) + e(n)

where the time varying row vector Cn is given by

Cn =
[
sin(2π 50n∆t) cos(2π 50n∆t) sin(2π 100n∆t) cos(2π 100n∆t)

]

and the measurement noise e(n) is zero mean and a (co)variance Q2.
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(c) In the model the rate of change for each of the parameters are described in the diagonal
elements of Q1. To capture the knowledge that the 100 Hz signal is changing amplitudes
at a rate much slower then the 50 Hz signal we can for example use

Q1 =

[
s1I2 0
0 s2I2

]

where I2 are identity matrices of size 2 by 2 and s1 and s2 are two positive scalars.
By setting s1 > s2 we explicitly model that α and β varies faster than the two other
parameters. The relative sizes between on one hand s1 and s2 and on the other hand
Q2 control trade off between the how fast the filter can track changes and the variability
of the estimates of the tracked parameters. If Q2 is selected small in comparison with
s1 and s2 then measurements are assumed “good” and tracking speed is fast.
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