Chalmers University of Technology Department of Materials and Manufacturing Technology

Examination in Phase Transformations MMK162 Advanced Engineering Materials 13.00-17.00, 30 October 2015

Aid permitted at examination: Electronic calculator of the simple type approved by Chalmers

Solutions and answers should be well worked out and <u>motivated</u> to get full credit.

The question pages must be submitted together with the written answers.

In the headlines below preliminary credits are given, this might be changed during correction. Solutions will be displayed on course homepage.

Assignments	Credit	
1. Phase diagrams and free energy curves	12	
2. Diffusion	8	
3. Interfaces and microstructure	9	
4. Solidification	8	
5. Diffusional transformations	7	
6. Diffusionless transformations	4	
7. Solid/gas interactions	2	
Sum:	50	

Limits for:	3>45% (22.5 - 30)
	4>60% (30.5 - 40)
	5>80% (40.5 - 50)

Grading will be based on the total sum of **50 points**. Bonus points earned during lectures (quiz) will be added to the exam points.

Göteborg, 2015.10.28

Assoc. Prof. Eduard Hryha

1. Phase diagrams and free energy curves (12 p)

- a) Derive phase diagram for Cr-W system using free energy diagrams according to the figure below. Respective temperatures are 3420, 2600, 1911, 1700, 1635, 1200 and 600 °C (marked on the top of each figure). X and Y-axes should be drawn in correct scale compared to the phase diagram. Mark phases in the respective phase stability fields on the diagram (5).
- b) Mark chemical potentials of the phase equilibriums for the free energy diagram at 2600°C. (1 p)

c) How similar is crystallographic structure of the Cr-rich BCC_A2 and W-rich BCC_A2#2? How is that reflected on G-curve? Short motivation is necessary to get full credit. (1 p)

Cr-rich BCC_A2 and W-rich BCC_A2#2 have the same BCC structure with only difference in lattice parameter (hence, marked as BCC_A2 and BCC_A2#2) – this results in the common G-curve for both. In case elements A and B have different crystallographic structures – each structure will have its own G-curves and so two separate G-curves will be present on the graphs above.

d) Describe the differences between ideal and regular solid solutions based on the Gibbs free energy – describe differences between the entropy and enthalpy of the ideal and regular solid solutions. Describe physical meaning of the enthalpy and entropy for both cases and express it using representative mathematical equations. Motivation is necessary to get full credit. (3 p).

In case of ideal solid solutions, the free energy change on mixing is connected only to the change in entropy as there is no heat of mixing ($\Delta H_{mix} = 0$) and so: $G_2 = X_A G_A + X_B G_B + \Delta G_{mix}$ where $\Delta G_{mix} = -T\Delta S_{mix}$. Entropy has two contributions: configurational and thermal: $S = k_B \ln\omega$; $S = S_{th} + S_{config}$; ω_{th} : No of ways thermal energy can be divided among atoms = number of ways vibration can be set up (here: no change in heat or volume – no change in ω_{th}); ω_{conf} : number of ways arranging atoms in a solution. Hence, $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix} = -T(S_2 - S_1) = -T (k_B \ln\omega_{config2} - k_B \ln 1) = -T k_B \ln\omega_{config2}$

Using statistical approach it can be shown that for ideal solution:

 $\Delta S_{mix} = -R(X_A \ln X_A + X_B \ln X_B)$

Because $X_{A,B} < 1$ this means that $\Delta S_{mix} > 0 \rightarrow$ entropy always increase on mixing and so $\Delta G_{mix} < 0 \rightarrow$ free energy decrease on mixing. So Gibbs free energy:

$$G_2 = G_1 + \Delta G_{mix} = X_A G_A + X_B G_B + RT \left(X_A \ln X_A + X_B \ln X_B \right)$$

In case of regular solutions, heat of mixing has to be taken into account: $\Delta H_{mix} \neq 0$:

- $\Delta H_{mix} > 0 \rightarrow$ endothermic \rightarrow heat absorbed

- $\Delta H_{mix} < 0 \rightarrow exothermic \rightarrow heat evolved$

Quasi-chemical approach:

- $\Delta H_{mix} (\Delta E)$ determined by bonds energies between adjacent atoms only;

- volumes of pure A and B are equal and not changed during mixing (V=const.);

 \rightarrow inter-atomic distances and bond energies are independent of composition Energy of the bonds:

1. A-A bonds each with energy ε_{AA}

2. B-B bonds each with energy ε_{BB}

3. A-B bonds each with energy ε_{AB}

 $\varepsilon = 0$ – state where the atoms are separated to infinity $\rightarrow \varepsilon$ is negative, stronger bond \rightarrow more negative

Number and type of bonds determine the internal energy of the solution:

$$E = P_{AA}\varepsilon_{AA} + P_{BB}\varepsilon_{BB} + P_{AB}\varepsilon_{AA}$$

Number of bonds per atom:

 $P_{AB} = N_a z X_A X_B$

If $\varepsilon <0 \rightarrow$ atoms will prefer to be surrounded by atoms of the opposite type $\rightarrow P_{AB}$ increase; If $\varepsilon >0 \rightarrow$ atoms will prefer to be surrounded by atoms of the same type $\rightarrow P_{AB}$ is less than in random solution;

$$\Delta H_{Mix} = P_{AB}\varepsilon = \varepsilon N_a z X_A X_B \text{ or expressed as } \Delta H_{Mix} = \Omega X_A X_B \text{ where } \Omega = \varepsilon N_a z$$

$$\Delta G_{Mix} = N_A z \varepsilon X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$$

$$G = G_1 + \Delta H_{mix} - T\Delta S_{Mix} = G_A X_A + G_B X_B + N_A z \varepsilon X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$$

e) Draw schematic diagrams of the effect of the exothermic and endothermic enthalpies of mixing in combination with temperature (low and high) on the shape of the curve of the free energy change on mixing ΔG_{mix} . Describe effect of concentration of solute on ΔG_{mix} in all cases. Short motivation is necessary to get full credit. (2 p).

Answer:

In all cases when X_A or $X_B \rightarrow 0 - - T\Delta S_{Mix}$ becomes vertical but slope of $\Delta H_{Mix} \rightarrow \Omega$. Hence, except at absolute zero, ΔG_{mix} always decrease on addition of small amount of solute.

2. Diffusion (8 p)

a) Calculate and sketch concentration profile of carbon after exposure of the steel at the oxidizing conditions (decarburization) at 1000°C for 30 min. Carbon potential of the processing atmosphere is constant and equal to 0.05%. Carbon content of the steel is 0.8%. Diffusion coefficient of carbon in austenite is D=4*10⁻¹¹ m²s⁻¹. Calculate values of the carbon content for as minimum 5 depths and based on it sketch approximate graph of carbon profile. (5p).

z	erf z	z.	erf z	z	erf z	z	erf z
0	0	0.40	0.4284	0.85	0.7707	1.6	0.9763
0.025	0.0282	0.45	0.4755	0.90	0.7970	1.7	0.9838
0.05	0.0564	0.50	0.5205	0.95	0.8209	1.8	0.9891
0.10	0.1125	0.55	0.5633	1.0	0.8427	1.9	0.9928
0.15	0.1680	0.60	0.6039	1.1	0.8802	2.0	0.9953
0.20	0.2227	0.65	0.6420	1.2	0.9103	2.2	0.9981
0.25	0.2763	0.70	0.6778	1.3	0.9340	2.4	0.9993
0.30	0.3286	0.75	0.7112	1.4	0.9523	2.6	0.9998
0.35	0.3794	0.80	0.7421	1.5	0.9661	2.8	0.9999

Table 5.3	Table	of	the	error	function
-----------	-------	----	-----	-------	----------

Carbon profile in case of decarburization: $C = C_0 erf \frac{x}{2\sqrt{Dt}}$ is valid only in case when carbon potential of the processing gas is equal to C_s=0!!!

However, in case you have defined carbon potential of the atmosphere (0.05 %C) – you have to use the same equation as for carburization $C = C_s - (C_s - C_0) erf \frac{x}{2\sqrt{Dt}}$ where C_s=0.05%C and

C₀=0.8%C. To simplify calculations it is easier to choose values of z and respective values of erf(z) from table of values of error function. Then, by knowing the value of z and Dt you can calculate depth x. By knowing the value of erf(z) you can calculate C. The sketch of carbon profile is presented below the table.

C ₀	Cs	Z	erf	D	t, s	Dt	2sqrt(Dt)	С	x (mm)
0,8	0,05	0	0	4,00E-11	1800	7,2E-08	0,000537	0,05	0
0,8	0,05	0,05	0,0564	4,00E-11	1800	7,2E-08	0,000537	0,0923	0,026833
0,8	0,05	0,1	0,1125	4,00E-11	1800	7,2E-08	0,000537	0,134375	0,053666
0,8	0,05	0,5	0,5205	4,00E-11	1800	7,2E-08	0,000537	0,440375	0,268328
0,8	0,05	0,75	0,7112	4,00E-11	1800	7,2E-08	0,000537	0,5834	0,402492
0,8	0,05	1	0,8427	4,00E-11	1800	7,2E-08	0,000537	0,682025	0,536656
0,8	0,05	2	0,9953	4,00E-11	1800	7,2E-08	0,000537	0,796475	1,073313

b) Describe diffusion in substitutional alloys – namely, describe Fick's first and second law in case of substitutional diffusion, as well as first and second Darkens' 1-st and 2-nd equations. Describe the meaning of the interdiffusion coefficient and its experimental determination. Motivation and presentation of respective equations is required to obtain full credit. (2 p)

If D_A and D_B are to be determined separately, the rate of lattice movement, ν , must be known. If cavities (vacancies/pores) are formed instead of movement of lattice planes, the resulting equations become complicated – almost impossible to evaluate interdiffusion coefficient.

c) Describe Kirkendal effect and its physical principle on example of Cu-Zn brass (schematically). Which types of defects can be created in the materials due to the Kirkendal effect? Motivation is required to obtain full credit. (1 p)

Kirkendal effect: Displacement of inert wires $-\alpha$ -brass (Cu-30%Zn) wound by Mo-wires in pure Cu. High difference in the diffusion coefficients between two elements in the alloy can result in the *creation of holes or voids* (*Kirkendall porosity*) as the vacancies can be absorbed by internal boundaries, surfaces, inclusions, etc.

3. Interfaces and microstructure (9p)

- a) Describe the main differences between the low-, high- and special-angle grain boundaries, their surface energy and mobility. (2 p).
- Low angle grain boundary misorientation between two grains small → array of dislocations. Energy of boundary is equal to the total energy of dislocations within unit area of boundary.
- Energy of boundary depends on the spacing of dislocations $D \to D = \frac{b}{\sin \theta} \approx \frac{b}{\theta}$
- At very small θ , γ is proportional to the dislocation density in the boundary: $\gamma_b \propto \frac{1}{D} \propto \theta$
- As θ increases \rightarrow strain field of dislocations progressively cancel $\rightarrow \gamma$ increases at decreasing rate;
- at θ >10-15° dislocation cores overlap \rightarrow impossible to identify individual dislocations $\rightarrow \gamma_b$ is almost independent on θ .
- At $\theta > 10-15^{\circ} \rightarrow \underline{random \ high \ angle \ boundary} \rightarrow \text{poor}$ fit, relatively open structure, bonds between atoms are brocken or highly distorted \rightarrow high γ_b , γ_b is almost independent of θ :
- Measured high-angle GB energies, γ_b , ar often found to be $\gamma_b \approx 1/3 \gamma_{sv}$;

Special High-Angle Grain Boundaries \rightarrow have lower energy than random high-angle grain boundaries \rightarrow particular misorientations allowing good fit between adjoining lattices. Example is coherent twin boundary, for example in fcc at θ = 70.5° around <110>. Energy of twin boundary is very sensitive to orientation \rightarrow if twin boundary does not lie exactly parallel to the twinning plane – incoherent twin boundary:

 Random high angle boundary – open structure and so high mobility than low-angle or special high-angle grain boundaries;

- Special high angle boundary low mobility but *can* have higher mobility than random if impurities stick to random high angle boundaries!
- b) Explain thermodynamic basics of the grain boundary migration, namely: driving force, activation energy and its effect on the net flux of atoms. Describe term "mobility" of the grain boundary and its connection to the driving force. Presentation of the relevant equations, sketch of the Gibbs free energy curve (with marked driving force and activation energy barrier) as well as motivation of the answer are necessary to get full credit. (3 p).

Answer:

At sufficiently high temperature $(T > 0.5 T_m)$ GB will migrate in order to reduce G. Slides:

- c) Describe mobility of the different types of grain boundaries and effect of the segregation on them. Describe effect of the temperature and solubility on segregation. Presentation of the relevant equations as well as motivation of the answer are necessary to get full credit. (1 p).
- Random high angle boundary open, high mobility
- Special high angle boundary low mobility but can have higher mobility than random. The reason for this is that impurities stick to random high angle boundaries and so decrease their mobility.
- Decreased solid solubility in the matrix: further lowered mobility due to increased grain

boundary concentration,
$$X_b \cong X_0 \exp \frac{\Delta G_b}{RT}$$

Free energy released when a solute atom is moved from the matrix to the grain boundary, ΔG_b :

- ΔG_b is usually positive and increases with increasing of misfit between the solute and the matrix;
- Grain boundary segregation decreases as temperature increases "evaporation" of the solute into the matrix;
- For low temperatures and high $\Delta G_b \rightarrow X_b$ approaches unity maximum saturation value;
- Boundary mobility varies markedly between elements segregation increases as the matrix solubility decreases;
- Solute atoms exert drag on the boundary that reduces boundary velocity;
- ΔG_b measures tendency of segregation.

- d) Describe the shape of the fully coherent precipitates based on interface energy. Describe the effect of the misfit and matrix properties (isotropic or anisotropic) on the shape of the fully coherent precipitates. Presentation of the relevant equations as well as motivation of the answer are necessary to get full credit. (3 p).
- When β phase precipitates in α matrix \rightarrow system will have minimum free energy when precipitate shape and orientation to matrix is optimized to give lowest interfacial energy
- If precipitate β has the same crystal structure as α matrix and similar lattice parameter \rightarrow two phases can form low energy coherent interfaces \rightarrow formation of fully coherent precipitates or GP zones (Guinier-Preston)
- Two crystal structures match almost perfect across all interfacial planes \rightarrow no large misfit or strain \rightarrow isotropy in γ \rightarrow equilibrium shape should be a <u>sphere</u>

- However, presence of misfit raises free energy of a system connected to elastic strain ΔG_s , than conditions for equilibrium (see slide below)

4. Solidification (8 p)

a) Describe homogeneous nucleation in solids, namely: driving force, change in the Gibbs free energy of the system due to the formation of the small sphere of solid, difference between the cluster and nuclei as well as rate of the homogeneous nucleation. Estimate the rate of the critical undercooling and present graphical relationship between the maximum cluster size and critical nuclei size. Presentation of the relevant equations, sketch of the Gibbs free energy curves and curve for the rate of homogeneous nucleation as well as motivation of the answer are necessary to get full credit. (3 p).

Driving force for solidification: $\Delta G_v \approx \Delta H - T\Delta S = L - T \frac{L}{T_m} = \frac{L \cdot (T_m - T)}{T_m} = \frac{L \cdot \Delta T}{T_m}$

Consider liquid at a temperature ΔT below T_m with a free energy G_I : $G_1 = (V_s + V_L)G_v^L$ If some atoms of liquid cluster together to form a small sphere of

solid: $G_2 = V_S G_v^S + V_L G_v^L + A_{SL} \cdot \gamma_{SL}$

Formation of solid results in free energy change ΔG :

$$\Delta G = G_2 - G_1 = V_S G_v^S + V_L G_v^L + A_{SL} \cdot \gamma_{SL} - (V_S + V_L) G_v^L =$$

$$=-V_{S}\left(G_{v}^{L}-G_{v}^{S}\right)+A_{SL}\cdot\gamma_{SL}=-V_{S}\Delta G_{v}+A_{SL}\cdot\gamma_{SL}$$

Below $T_m \rightarrow \Delta G_v$ is <u>positive</u> so that creation of solid has negative contribution to ΔG ;

 \mathbf{V}_{L} \mathbf{V}_{s} \mathbf{V}_{s} $\mathbf{G}_{2}=\mathbf{G}_{4}+\Delta\mathbf{G}$

Creation of solid/liquid interface – positive contribution to ΔG . Excess free energy can be minimized by the correct particle shape

Since dG=0 when $r=r^* \rightarrow$ nuclei is in equilibrium with liquid:

Differentioation of $\Delta G_r = -\frac{4\pi}{3}r^3 \Delta G_v + 4\pi r^2 \gamma_{SL}$ gives $r^* = \frac{2\gamma_{SL}}{\Delta G_v}$ and $\Delta G^* = \frac{16\pi \gamma_{SL}^3}{3(\Delta G_v)^2}$ Substituting ΔG_v : $r^* = \left(\frac{2\gamma_{SL}T_m}{L_v}\right)\frac{1}{\Delta T}$ and $\Delta G^* = \left(\frac{16\pi \gamma_{SL}^3 T_m^2}{3L_v^2}\right)\frac{1}{(\Delta T)^2}$ - larger undercooling: smaller critical radius of the nuclei r*.

Rate of homogeneous nucleation (see the slide below):

 $exp(-\Delta G^*/kT)$.

If liquid contains C_{θ} atoms per unit volume \rightarrow number of critically sized cluster per unit volume

given by Arrhenius expression:
$$C^* = C_0 \exp\left(-\frac{\Delta G_{Hom}^*}{k_B T}\right)$$

Frequency
$$f_0$$
 of addition of one more atom which make clusters nuclei
 $\dot{N}_{Hom} = f_0 C_0 \exp\left(-\frac{\Delta G_{Hom}^*}{k_B T}\right)$ or $\dot{N}_{Hom} = f_0 C_0 \exp\left(-\frac{A}{(\Delta T)^2}\right)$ where $A = \frac{16\pi\gamma_{SL}^3 T_m^2}{3L_v^2 k_B T}$

- $f_{\theta} \rightarrow$ complex function that depends on vibrational frequency, activation energy for diffusion in liquid and surface area of the critical nuclei;
- typical values for $C_0 \approx 10^{29}/m^3$; $f_0 \approx 10^{11}$;
- reasonable nucleation rate: $1/cm^3$ s: ΔG^* has to be below 78kT!

Graphical relationship between the maximum cluster size and critical nuclei size and homogeneous rate of nucleation: (see slide below):

b) Describe unidirectional solidification in solid bar assuming that there is no diffusion in solid but there is perfect mixing in liquid. Sketch respective concentration profile of the solute along the solidifying bar as well as concentration profile in the liquid in front of the solidifying interface. Present and describe how variation of the solute concentration along the solidified bar can be estimated. Presentation of the relevant equations, sketch of the concentration profiles as well as motivation of the answer are necessary to get full credit. (3 p).

Variation of the solute concentration along the solidified bar can be estimated using Scheil equations:

- c) Using Al-Zn phase diagram, presented in the Figure, assuming that alloy is solidifying with no convection, evaluate for the composition Al-10 wt.%Zn:
 - i) interface temperature at a steady state
 - ii) thickness of the diffusion layer
 - iii) temperature gradient required to maintain planar interface

The diffusion coefficient for the liquid $D_L=5\times10^{-9} \text{ m}^2\text{s}^{-1}$ and speed of planar solid/liquid interface is $5\times10^{-6} \text{ m}^*\text{s}^{-1}$. (2p)

- i) interface temperature at a steady state solidus
 - temperature for the composition concerned ~893 K;
- ii) Diffusion layer thickness: $D/v=10^{-3}$ m;
- iii) Temperature gradient required to maintain planar interface: $\frac{dT_L}{dx} > \frac{T_1 T_3}{D_{11}} = 24K / mm$

Where T₁=917 K; T₃=893 K (from the phase diagram).

5. Diffusional transformations (7 p).

a) Describe the reason for the nose-shape of the rate of homogeneous nucleation. Use homogeneous nucleation as an example. Presentation of the relevant equations, sketch of the N=f(T) dependence as well as motivation of the answer are necessary to get full credit. (3 p).

Answer:

 $\dot{N}_{Hom} = fC_0 \exp\left(-\frac{\Delta G^*}{kT}\right)$ Nucleation rate during homogeneous nucleation addition of one more atom which make clusters nuclei: $f = \omega \exp\left(-\frac{\Delta G_m}{kT}\right)$. *f* is proportional to the nucleus area and *diffusion* rate. Hence, it depends on the ΔG_m - activation energy for atomic migration per atom. ω is a factor describing atomic vibration frequency and area of critical nucleus. Therefore, nucleation rate during homogeneous nucleation depends in two parameters – barrier for

nucleation
$$\Delta G^* = \frac{16\pi\gamma^3}{3(\Delta G_v - \Delta G_s)^2}$$
 and activation energy for atomic migration ΔG_m :
 $\dot{N}_{Hom} = \omega C_0 \exp\left(-\frac{\Delta G_m}{kT}\right) \exp\left(-\frac{\Delta G^*}{kT}\right)$

Following description in the slide below:

b) Describe the difference in the initial rate of the GP zone formation depending on the temperature, from which alloy is quenched before age-hardening. Describe the reasons for the presence of the precipitate-free zone (PFZ) in case of the age-hardening alloys and how it can be avoided/minimized. (2p)

c) Describe the differences between the upper and lower bainite: nucleation, structure, orientation relationship to the primary austenitic grain, carbide morphology and precipitation, temperatures of formation. Motivation of the answer are necessary to get full credit. (2p)

Answer: slides below

6. Diffusionless transformation (4 p)

a) Describe formation and crystallography of martensite – namely, structure, Bain model and the ways how the strain of the surrounded austenite can be compensated. Motivate your answer to get full credit. (3p)

Answer:

- microstructure \rightarrow within a given grain all the plates grow in a limited number of orientations;
- orientation and plate morphology strongly depend on alloy composition \rightarrow especially carbon and nickel;
- problem: high speed of growth requires high mobility of interface moving on γ -planes \rightarrow but not always dislocation glide plane \rightarrow how does this work?
- habit plane is observed to be undistorted macroscopically;
- for habit plane to be undistorted during growth:
 - homogenous shear parallel to habit plane;

4% expansion normal to habit plane.

Bain model:

b) Describe the role of dislocation in martensite nucleation. Presentation of the relevant equations as well as motivation of the answer are necessary to get full credit. (1p)

Answer: slide below

7. Solid/gas interactions (2 p)

During sintering of the admixed powder metallurgy steels, containing iron powder (base), nickel and chromium powder (alloying elements), full reduction of the surface oxides, covering powder particles, is required to provide good inter-particle bonding and diffusion of the alloying elements. Estimate maximum tolerable pressure of the water vapour in the system during sintering in the N₂/10% H₂ atmosphere at 1100 °C to provide efficient reduction of the all surface oxides, presented

in the system. Equation of the reducing reaction: $\frac{2}{n}M_mO_n + 2H_2 = \frac{2m}{n}M + 2H_2O$ $\Delta G(\text{NiO}) = -110.877 \text{ kJ}; \Delta G(\text{FeO}) = 6.530 \text{ kJ}; \Delta G(\text{Cr}_2\text{O}_3) = 178.983 \text{ kJ}$

Answer:

Equations:
$$\frac{2}{n}M_mO_n + 2H_2 = \frac{2m}{n}M + 2H_2O$$
 $K = \frac{p^2(H_2O)}{p^2(H_2)}$ $\frac{p(H_2)}{p(H_2O)} = \exp\frac{\Delta G_2^0}{2RT}$
 $p(H_2O) = \frac{p(H_2)}{\exp\frac{\Delta G_2^0}{2RT}}$

Powder particles are covered by respective oxides (iron particles by FeO, nickel particles by NiO and so on). Calculate based on the partial pressure of hydrogen (0.1 bar) and requirements for the most stable oxide (Cr_2O_3) – can be seen from Gibbs free energy or lower partial pressure of the water vapor obtained for oxides of interest. In this case - maximum tolerable water vapour pressure in the system at T= 1100°C required to provide reduction of mentioned above oxides - most stable oxide (Cr_2O_3) - is p(H₂O)_{Cr2O3}=3.94e-5 bar.