
Introduction to Real-Time Systems

Solutions to final exam May 26, 2018 (version 20180526)

PROBLEM 1

a) False: Deadline inversion occurs in EDF scheduling when a higher-priority task (with a short
deadline) cannot execute (because another task holds a resource that the higher-priority task needs)
and a lower-priority task (with longer deadline) is able to execute instead (thereby invalidating the
priority mechanism).

b) False: For a sporadic task the time interval between two, subsequent, arrivals is guaranteed to never
be less than a minimum value.

c) False: For an NP-complete problem to have pseudo-polynomial time complexity the largest number
in the problem cannot be bounded by the input length (size) of the problem.

d) False: The utilization guarantee bound for RM-US converges towards 33.3% as the number of
processors become very large.

e) True: TinyTimber’s AFTER() construct allows the programmer to call a method after a delay
relative to the calling method’s baseline, thereby eliminating any systematic time skew.

f) True: If we know that the task set is not schedulable then a sufficient test must have resulted in
the outcome ’False’. This is because, for sufficient tests, the outcome ’True’ always means that the
task set is schedulable.

PROBLEM 2

a) The four conditions for deadlock is:

• Mutual exclusion – only one task at a time can use a resource

• Hold and wait – there must be tasks that hold one resource at the same time as they request
access to another resource

• No preemption – a resource can only be released by the task holding it

• Circular wait – there must exist a cyclic chain of tasks such that each task holds a resource
that is requested by another task in the chain

b) The basic idea of a priority ceiling protocol is as follows:

• Each resource is assigned a priority ceiling equal to the priority of the highest-priority task
that can lock it.

• A task τi is allowed to enter a critical region only if its priority is higher than all priority
ceilings of the resources currently locked by tasks other than τi.

• When task τi blocks one or more higher-priority tasks, it temporarily inherits the highest
priority of the blocked tasks.



PROBLEM 3

a) The WCET of Calculate(x) is derived based on three cases of the value of parameter x.

Case 1: x = 0:

WCET (Calculate(x = 0))
= {Declare, t}+ {Compare, x = 0}+ {Assign, t}+ {Return, t}
= 1 + 2 + 1 + 2 = 6

Case 2: x = 1:

WCET (Calculate(x = 1))
= {Declare, t}+ {Compare, x = 0}+ {Compare, x = 1}+
{Assign, t}+ {Return, t}
= 1 + 2 + 2 + 1 + 2 = 8

Case 3: x > 1:

WCET (Calculate(x > 1))
= {Declare, t}+ {Compare, x = 0}+ {Compare, x = 1}+
{Sub, x− 1}+ {Call, Calculate(x− 1)}+WCET (Calculate(x− 1))+
{Multiply, x ∗ Calculate(x− 1)}+ {Assign, t}+ {Return, t}
= 1 + 2 + 2 + 3 + 2 + 5 + 1 + 2 +WCET (Calculate(x− 1))
= 18 +WCET (Calculate(x− 1))

The WCET of Respond() is derived as follows:

WCET (Respond())
= {Declare, c}+ {Declare, r}+ {Assign, c}+
{Call, Calculate(c)}+WCET (Calculate(c)) + {Shift, Calculate(c)}+
{Add, c}+ {Assign, r}+ {Assign,Outport}
= 1 + 1 + 1 + 2 + 2 + 3 + 1 + 1 +WCET (Calculate(c))
= 12 +WCET (Calculate(c))

Therefore, for the largest input port value c = 6, the WCET of Respond() is

WCET (Respond())
= 12 +WCET (Calculate(6)) = 12 + 18 +WCET (Calculate(5))
= 12 + 2× 18 +WCET (Calculate(4)) = 12 + 3× 18 +WCET (Calculate(3))
= 12 + 4× 18 +WCET (Calculate(2)) = 12 + 5× 18 +WCET (Calculate(1))
= 12 + 5× 18 + 8 = 110µs

Since the deadline of Respond() is 80 µs, the deadline is not met.

b) The largest input port value for which the WCET of Respond() does not exceed the deadline of
80 µs is c = 4:

WCET (Respond)
= 12 +WCET (Calculate(4)) = 12 + 18 +WCET (Calculate(3))
= 12 + 2× 18 +WCET (Calculate(2)) = 12 + 3× 18 +WCET (Calculate(1))
= 12 + 3× 18 + 8 = 74µs

Thus, the largest acceptable input port data range is [0,+4]



PROBLEM 4

a) A compact solution could look similar to this:

#include TinyTimber.h

typedef struct {

Object super;

char *id;

} PeriodicTask;

Object app = initObject();

PeriodicTask ptask1 = { initObject(), "Task 1" };

PeriodicTask ptask2 = { initObject(), "Task 2" };

void T1(PeriodicTask *self, int u) {

Action1(); // procedure doing time-critical work

SEND(MSEC(105), MSEC(30), self, T1, 0);

}

void T2(PeriodicTask *self, int u) {

Action2(); // procedure doing time-critical work

SEND(MSEC(70), MSEC(25), self, T2, 0);

}

void kickoff(PeriodicTask *self, int u) {

SEND(MSEC(0), MSEC(30), &ptask1, T1, 0);

SEND(MSEC(15), MSEC(25), &ptask2, T2, 0);

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}

b) The priorities for scheduled activities are given by the deadlines in SEND() or BEFORE() calls, since
the TinyTimber kernel uses earliest-deadline-first scheduling.

c) TinyTimber uses the Deadline Inheritance Protocol, combined with deadlock detection via the return
value of the SYNC call.



PROBLEM 5

We start by observing that task τ1 has a first arrival time that differs from that of the other tasks. This
means that the use of a utilization-based or response-time-based schedulability test may become overly
pessimistic IF there exists no point in time in the schedule where all tasks arrive at the same time. This,
in turn, could mean that, should the test fail, the task set could potentially still be schedulable.

Our first candidate method for schedulability analysis is Liu and Layland’s classic utilization-based test.
For three tasks, the schedulability bound is Ulub = 3(21/3 − 1) ≈ 0.780. Unfortunately, the accumulated
task utilization, U = 1/3 + 3/8 + 1/4 ≈ 0.958, significantly exceeds the guarantee bound, and the test
(being only sufficient) does not provide any useful information.

Our second candidate method is response-time analysis. Since task periods are required by the analysis,
we begin by deriving the period of each task: Ti = Ci/Ui = Ci · (Ui)

−1

T1 = C1 · (U1)
−1 = 0.2C · 3 = 0.6C

T2 = C2 · (U2)
−1 = 0.3C · 8/3 = 0.8C

T3 = C3 · (U3)
−1 = 0.3C · 4 = 1.2C

Assuming RM scheduling, task τ1 has highest priority (shortest period) and task τ3 has lowest priority.
We then calculate the response time of each task and compare it against the corresponding task deadline:

R1 = C1 = 0.2C < D1 = T1 = 0.6C.

R2 = C2 + ⌈R2

T1

⌉ · C1. Assume that R0
2 = C2 = 0.3C:

R1
2 = 0.3C + ⌈ 0.3C

0.6C ⌉ · 0.2C = 0.3C + 1 · 0.2C = 0.5C

R2
2 = 0.3C + ⌈ 0.5C

0.6C ⌉ · 0.2T = 0.3C + 1 · 0.2C = 0.5C < D2 = T2 = 0.8C

R3 = C3 + ⌈R3

T1

⌉ · C1 + ⌈R3

T2

⌉ · C2. Assume that R0
3 = C3 = 0.3C:

R1
3 = 0.3C + ⌈ 0.3C

0.6C ⌉ · 0.2C + ⌈ 0.3C
0.8C ⌉ · 0.3C = 0.3C + 1 · 0.2C + 1 · 0.3C = 0.8C

R2
3 = 0.3C + ⌈ 0.8C

0.6C ⌉ · 0.2C + ⌈ 0.8C
0.8C ⌉ · 0.3C = 0.3C + 2 · 0.2C + 1 · 0.3C = 1.0C

R3
3 = 0.3C + ⌈ 1.0C

0.6C ⌉ · 0.2C + ⌈ 1.0C
0.8C ⌉ · 0.3C = 0.3C + 2 · 0.2C + 2 · 0.3C = 1.3C > D3 = T3 = 1.2C

The response-time analysis thus indicates that the worst-case response-time for τ3 exceeds the task
deadline. However, by observing the given periods and offsets (see time diagram below), we can see
that there does NOT exist a point in time where all tasks arrive at the same time. This means that
the worst-case response-time for τ3 calculated by the response-time analysis will in fact never occur, and
that it still is possible that τ3 will meet its deadline. We will find out by using hyper-period analysis.

By simulating the RM schedule for one hyper period1 we will see that all tasks indeed meet their deadlines.
The hyper period for the given task set is LCM = 2.4C. Let C = 10 to get LCM = 24:

0 10 20 t

✲

τ1

↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ2

↑ ↑ ↑ ↑↓ ↓ ↓

τ3

↑ ↑ ↑↓ ↓

τ11 τ21 τ31 τ41

τ12 τ22 τ22 τ32

τ13 τ13 τ23

1Although we have an asynchronous task set, all task executions are completed within the first hyper period. This

means that we only need to check schedulability within that interval.



PROBLEM 6

a) Perform processor-demand analysis:

First, determine LCM of the task periods: LCM{T1, T2, T3} = LCM{8, 16, 32} = 32.

Then, derive the set K of control points: K1 = {4, 12, 20, 28},K2 = {12, 28} and K3 = {30} which
gives us K = K1 ∪K2 ∪K3 = {4, 12, 20, 28, 30}.

Schedulability analysis now gives us:

L NL

1 · C1 NL

2 · C2 NL

3 · C3 CP (0, L) CP (0, L) ≤ L

4 (⌊ (4−4)
8

⌋+ 1) · 3 = 3 (⌊ (4−12)
16

⌋ + 1) · 4 = 0 (⌊ (4−30)
32

⌋+ 1) · 8 = 0 3 OK

12 (⌊ (12−4)
8

⌋+ 1) · 3 = 6 (⌊ (12−12)
16

⌋+ 1) · 4 = 4 (⌊ (12−30)
32

⌋+ 1) · 8 = 0 10 OK

20 (⌊ (20−4)
8

⌋+ 1) · 3 = 9 (⌊ (20−12)
16

⌋+ 1) · 4 = 4 (⌊ (20−30)
32

⌋+ 1) · 8 = 0 13 OK

28 (⌊ (28−4)
8

⌋+ 1) · 3 = 12 (⌊ (28−12)
16

⌋+ 1) · 4 = 8 (⌊ (28−30)
32

⌋+ 1) · 8 = 0 20 OK

30 (⌊ (30−4)
8

⌋+ 1) · 3 = 12 (⌊ (30−12)
16

⌋+ 1) · 4 = 8 (⌊ (30−30)
32

⌋+ 1) · 8 = 8 28 OK

The processor demand in each strategic time interval never exceeds the length of the interval, so
all tasks meet their deadlines.

b) From sub-problem a): LCM{8, 16, 32} = 32.

A simulation of the tasks using EDF scheduling in the interval [0,LCM ] gives the following timing
diagram. We see that, also here, all task meet their deadlines.

0 10 20 30 t

✲

τ3

↑ ↑↓

τ2

↑ ↑ ↑↓ ↓

τ1

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ11 τ21 τ31 τ41

τ12 τ22

τ13 τ13 τ13 τ13

c) Based on the timing diagram in sub-problem b) it is obvious that task τ3 may decrease its deadline to
D3 = 28 without any task missing its deadline. Re-applying the processor-demand analysis after
merging the new D3 with the already-existing control point at L = 28 (and removing L = 30)
verifies this:

L NL

1 · C1 NL

2 · C2 NL

3 · C3 CP (0, L) CP (0, L) ≤ L

4 (⌊ (4−4)
8

⌋+ 1) · 3 = 3 (⌊ (4−12)
16

⌋ + 1) · 4 = 0 (⌊ (4−28)
32

⌋+ 1) · 8 = 0 3 OK

12 (⌊ (12−4)
8

⌋+ 1) · 3 = 6 (⌊ (12−12)
16

⌋+ 1) · 4 = 4 (⌊ (12−28)
32

⌋+ 1) · 8 = 0 10 OK

20 (⌊ (20−4)
8

⌋+ 1) · 3 = 9 (⌊ (20−12)
16

⌋+ 1) · 4 = 4 (⌊ (20−28)
32

⌋+ 1) · 8 = 0 13 OK

28 (⌊ (28−4)
8

⌋+ 1) · 3 = 12 (⌊ (28−12)
16

⌋+ 1) · 4 = 8 (⌊ (28−28)
32

⌋+ 1) · 8 = 8 28 OK

This is, however, not the smallest possible value of D3 that still makes the task set schedulable.



It is, in fact, possible for task τ3 to decrease its deadline to D3 = 21 without any task missing its
deadline, as can be seen in the timing diagram below:

0 10 20 30 t

✲

τ3

↑ ↑↓

τ2

↑ ↑ ↑↓ ↓

τ1

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ11 τ21 τ31 τ41

τ12 τ22

τ13 τ13 τ13

Re-applying the original processor-demand analysis with the new control point at L = 21 (replacing
L = 30) verifies this:

L NL

1 · C1 NL

2 · C2 NL

3 · C3 CP (0, L) CP (0, L) ≤ L

4 (⌊ (4−4)
8

⌋+ 1) · 3 = 3 (⌊ (4−12)
16

⌋ + 1) · 4 = 0 (⌊ (4−21)
32

⌋+ 1) · 8 = 0 3 OK

12 (⌊ (12−4)
8

⌋+ 1) · 3 = 6 (⌊ (12−12)
16

⌋+ 1) · 4 = 4 (⌊ (12−21)
32

⌋+ 1) · 8 = 0 10 OK

20 (⌊ (20−4)
8

⌋+ 1) · 3 = 9 (⌊ (20−12)
16

⌋+ 1) · 4 = 4 (⌊ (20−21)
32

⌋+ 1) · 8 = 0 13 OK

21 (⌊ (21−4)
8

⌋+ 1) · 3 = 9 (⌊ (21−12)
16

⌋+ 1) · 4 = 4 (⌊ (21−21)
32

⌋+ 1) · 8 = 8 21 OK

28 (⌊ (28−4)
8

⌋+ 1) · 3 = 12 (⌊ (28−12)
16

⌋+ 1) · 4 = 8 (⌊ (28−21)
32

⌋+ 1) · 8 = 8 28 OK

It is not possible to further decrease D3. For example, choosing D3 = 20 would cause either τ1
or τ3 to miss its deadline. The last processor-demand analysis above verifies this: there is only
20 − 13 = 7 time units of slack available in control point L = 20, but adding one instance of τ3
would require C3 = 8 time units.



PROBLEM 7

a) Since rate-monotonic (RM) scheduling is used, the task priorities are as follows:

prio(τ1) = H, prio(τ2) = H, prio(τ3) = H, prio(τ4) = L.

We generate a multiprocessor schedule with tasks τ1, τ2 and τ3 (having the highest priorities)
running on one processor each. Task τ4 is scheduled in the remaining time slots according to the
following diagram (covering the first execution of τ4):

0 100 200 t

✲

τ1 ↑ ↑ ↑↓ ↓

τ2 ↑ ↑ ↑↓ ↓

τ3 ↑ ↑ ↑↓ ↓

τ4 ↑ ↑↓

µ1

µ2

µ3

τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33

τ14 τ14 τ14

We observe that the first instance of task τ4 completes its execution at t = 211 on processor µ1,
thereby missing its deadline at t = T4 = 200. This happens despite there being significant processor
capacity available on processors µ2 and µ3. A clear case of Dhall’s effect!

b) We begin by calculating the utilization Ui for each task:

Ci Ti Ui

τ1 10 100 0.1
τ2 10 100 0.1
τ3 10 100 0.1
τ4 141 200 0.705
τ5 141 200 0.705
τ6 141 200 0.705

Then, number the three processors µ1, µ2 and µ3.

According to the RMFF partitioning algorithm the tasks should be assigned to the processors in
the following (RM) order: τ1, τ2, τ3, τ4, τ5, τ6.

Tasks τ1, τ2, and τ3 can all be assigned to processor µ1, since

U1 + U2 + U3 = 0.1 + 0.1 + 0.1 = 0.3 < URM(3) = 3 · (21/3 − 1) ≈ 0.780

Task τ4 cannot assigned to µ1, since

U1 + U2 + U3 + U4 = 0.3 + 0.705 > 1.0

Task τ4 can be assigned to µ2, since there are no task assigned to that processor.

Task τ5 cannot assigned to µ1, since

U1 + U2 + U3 + U5 = 0.3 + 0.705 > 1.0

Task τ5 cannot assigned to µ2, since

U4 + U5 = 0.705 + 0.705 > 1.0



Task τ5 can be assigned to µ3, since there are no task assigned to that processor.

Task τ6 cannot assigned to µ1, since

U1 + U2 + U3 + U6 = 0.3 + 0.705 > 1.0

Task τ6 cannot assigned to µ2, since

U4 + U6 = 0.705 + 0.705 > 1.0

Task τ6 cannot assigned to µ3, since

U5 + U6 = 0.705 + 0.705 > 1.0

Task τ6 can, consequently, not be assigned to any processor. This means that the given task set
cannot be scheduled using the RMFF algorithm.

c) The common property of the task sets in sub-problems a) and b) is that, with the RM approach,
lowest priority is given to the tasks that have the highest computational requirements in relation
to their periods, i.e. the “heavy” tasks in the task set. The way the set of highest-priority tasks
is constructed the “heavy” task will not be able to utilize the available processor capacity in the
best way, and thereby a “heavy” task will either miss its deadline (as in sub-problem a) or not be
assigned to any processor (as in sub-problem b).

d) If task priorities are given according to the rate-monotonic utilization-separation (RM-US) approach
it may be possible to circumvent Dhall’s effect, since that approach gives highest priority to “heavy”
tasks in the task set. In order to make sure that task deadlines are met using the RM-US approach
we need to verify that the total task utilization does not exceed the guarantee bound for RM-US.

The total utilization of the task set is UTotal = U1 + U2 + U3 + U4 = 0.3 + 0.905 = 1.205

The guarantee bound for RM-US is URM−US = m2

3m−2 . Since m = 3, URM−US = 9/7 ≈ 1.285.

Consequently, by using the RM-US approach, all task deadlines for the task set in sub-problem a)
will be met since 1.205 < 1.285. The successful schedule in the hyper period [0, 200] can be seen
in the timing diagram below.

0 100 200 t

✲

τ1 ↑ ↑ ↑↓ ↓

τ2 ↑ ↑ ↑↓ ↓

τ3 ↑ ↑ ↑↓ ↓

τ4 ↑ ↑↓

µ1

µ2

µ3

τ14

τ11 τ21

τ12 τ22

τ13 τ23

e) It is easy to see that, if the “heavy” tasks are assigned to the processors before the “light” tasks, it
is possible to find a task-to-processor assignment for which RM-priority scheduling will meet all
task deadlines.

An example of one such assignment is where each processor contains one “heavy” and one “light”
task. The task utilization on each processor is then 0.1+0.705 = 0.805 < URM(2) = 2 · (21/2− 1) ≈
0.828, which means that all task deadlines are met on each processor.

Consequently, there exists a task-to-processor assignment for the task set in sub-problem b), such
that all task deadlines will be met when task priorities are given according to the RM policy.


