
Real-Time Systems — EDA222/DIT161

Final Exam, March 10, 2014 at 08:30 – 12:30 in the V building

Examiner:
Professor Jan Jonsson

Questions:
Risat Pathan, phone: 076 214 8509

Aids permitted during the exam:
J. Nordlander, Programming with the TinyTimber kernel
Chalmers-approved calculator

Content:
The written exam consists of 8 pages (including cover), containing 7 problems
worth a total of 60 points.

Grading policy:
24–35 ⇒ grade 3
36–47 ⇒ grade 4
48–60 ⇒ grade 5

Solution:
Posted on the course home page on Tuesday, March 11, 2014 at 09:00.

Results:
Posted on the course home page on Monday, March 31, 2014 at 09:00.

Inspection:
Room 4128, Rännvägen 6 B, on Monday, March 31, 2014 at 10:00–11:00. Inspection at
another occasion could be arranged by contacting the course examiner.

Language:
Your solutions should be written in English.

IMPORTANT ISSUES

1. Use separate sheets for each answered problem, and mark each sheet with the problem number.

2. Justify all answers. Lack of justification can lead to loss of credit even if the answer might be
correct.

3. Explain all calculations thoroughly. If justification and method is correct then simple calculation
mistakes do not necessarily lead to loss of credit.

4. If some assumptions in a problem are missing or you consider that the made assumptions are
unclear, then please state explicitly which assumptions you make in order to find a solution.

5. Write clearly! If I cannot read your solution, I will assume that it is wrong.

Good Luck!



PROBLEM 1

State whether the following propositions are True or False. Each correct statement will give 0.5
points; each erroneous statement will give -0.5 points; an omitted statement gives 0 points. Although
a motivation for a correct answer is not required, a convincing one gives another 0.5 points, while an
erroneous/weak one gives another -0.5 points. Quality guarantee: The total result for this problem
cannot be less than 0 points. (6 points)

a) A necessary schedulability condition for periodic tasks on a uniprocessor platform is that the total
utilization of the tasks is not larger than 1.

b) Message queuing delay is bounded in network communication using controller area network (CAN).

c) An exact schedulability test for global fixed-priority scheduling of periodic tasks is already known.

d) Hard real-time guarantee cannot be provided for systems with sporadic tasks since the inter-arrival
time of consecutive instances of the tasks is not strictly periodic.

e) Deadlock occurs only in non-preemptive scheduling since a task that holds a shared resource cannot
be preempted.

f) Disabling processor interrupts is a machine-level technique that is generally used to implement mutual
exclusion in multiprocessor systems.

PROBLEM 2

A fundamental prerequisite for correct concurrent execution of multiple tasks with shared resources is
that the run-time system can guarantee mutual exclusion and synchronization.

a) Describe how mutual exclusion and synchronization are achieved among the object methods in Tiny-
Timber? (4 points)

b) State one similarity and one difference between protected object and monitor. (2 points)

PROBLEM 3

Most scheduling analysis techniques assume the worst-case execution time (WCET) to model the com-
putational demand of a real-time task. One of the earliest methods for WCET analysis was presented
by Shaw in the end of the 1980s. Assume that the function main (see in next page) is used as part of
a real-time program and that the function, when called, is allowed to take at most 185 µs to execute
where.

• Each declaration statement costs 1 µs to execute.

• Each assignment statement costs 1 µs to execute. Assume that the assignment of initial values to
elements of arrays also costs 1 µs regardless of the number of elements.

• A function call costs 2 µs plus WCET for the function in question.

• Each compare statement costs 2 µs.

• Each addition and subtraction operation costs 3 µs.

• Each multiplication and division operation costs 4 µs.

• Each return statement costs 2 µs.



• Each modulo operation costs 5 µs.

• The function abs() is predefined and costs 5 µs. This function computes and returns the absolute
value of the number given as its parameter. For example, abs(-5) returns 5. Assume that the
overhead to call function abs() is already included in its WCET estimation.

• Reading a value of an array element costs 0 µs.

• All other language constructs can be assumed to take 0 µs to execute.

int main(){

char Flag;

int result;

int P;

int Q;

int find;

int count;

int data [6] = {1, 2, 3, 4, 5, 6};

count = 6;

P = -16;

Q = 12;

Flag = ’F’;

if((abs(P) % Q) != 0)

find = FuncA(abs(P), Q);

else

find = Q;

result = FuncC(data, find, 0, count-1);

if (result == -1)

return -1;

else if (result <= 16)

{

Flag = ’T’;

return 1;

}

else

{

Flag = ’T’;

return 2;

}

}

int FuncA(int x, int y){

if (y == 0)

return x;

else

return FuncA(y, x % y);

}



int FuncB(int y){

int z;

z = 2;

if(y == 0)

return 1;

while(y > 1){

z = z * z;

y = y - 1;

}

return z;

}

int FuncC(int data[], int x, int y, int z){

int start;

int end;

int mid;

start = y;

end = z;

mid = start + (end - start)/2;

if (start > end)

return -1;

else if (data[mid] == x)

return FuncB(data[mid]);

else if (data[mid] > x)

return FuncC(data, x, start, mid-1);

else

return FuncC(data, x, mid+1, end);

}

a) Drive WCET for function main by using Shaws method and check whether the functions deadline
will be met or not. (8 points)

b) Identify all the false paths in the program given in subproblem a). (2 points)

PROBLEM 4

Consider a real-time system with a sensor and a printer. The system is implemented using independent
periodic tasks T1 and T2. Each invocation of periodic task T1 calls another job J1. Task T1 reads sensor
measurements and job J1 processes them. Each invocation of periodic task T2 buffers the processed
sensor data during first 10ms and prints the buffered data during next 30ms. A timing specification for
the tasks and job (collectively called processes) is given in the table below.

Process Offset Period Deadline Execution Time
T1 0 60 10 10
J1 10 – 20 20
T2 30 60 infinite 40

All numbers in milliseconds (ms)



On a separate sheet at the end of this exam paper you find a scheduling diagram template and a C-code
template. Write your solutions of subproblems a) and b) directly on that sheet and hand it in for grading
together with the rest of your solutions.

a) Draw the TinyTimber schedule for the processes from time 0ms to 600ms using the diagram template
given at the end of this exam paper. The sensor value is incremented by 1 in every 50ms. Assume
that at time instant 0, the sensor value is 0. Show the sensor values printed by task T2. (4 points)

b) Implement the processes in C code using the template at the end of this exam paper. (4 points)

PROBLEM 5

Consider a uniprocessor real-time system with three periodic tasks and a run-time system that employs
static scheduling using a time table. The table below shows Oi (offset), Ci (WCET), Di (deadline) and
Ti (period) for the three tasks.

Oi Ci Di Ti

τ1 1 1 3 3
τ2 0 1 3 4
τ3 2 ? 6 6

a) Find the largest value of C3 by simulating the deadline-monotonic (DM) schedule to construct a time
table for the execution of the three tasks such that all the tasks meet their deadlines. Assume that
the tasks are allowed to preempt each other. Your solution should clearly indicate the start and
stop times for each task. In addition, the total length of your time table (in time units) should be
given. (5 points)

b) State one advantage and one disadvantage of static scheduling over dynamic scheduling. (2 points)

c) State two disadvantages of preemptive scheduling over non-preemptive scheduling. (2 points)

PROBLEM 6

Consider a real-time system with periodic tasks and a run-time system that employs scheduling on
uniprocessor. All tasks arrive the first time at time 0.

a) Do you agree that if a periodic task set is schedulable (i.e., meet all the deadlines) using Deadline-
Monotonic (DM) scheduling algorithm where the relative deadline of each task is equal to its
period, then the task set is also schedulable (i.e., meet all the deadlines) using Earliest-Deadline
First (EDF) scheduling algorithm? Why or why not? (2 points)

b) The table below shows Ci (WCET), Di (deadline) and Ti (period) for the three periodic tasks.
Can you guarantee that the task set is schedulable using Earliest-Deadline-First (EDF) scheduling
algorithm for some C3 where C3 is an integer and 5 ≤ C3 ≤ 7? Why or why not? Show your
calculation. (6 points)

Ci Di Ti

τ1 2 5 5
τ2 3 6 10
τ3 ? 2C3 20



c) Consider a task set scheduled using uniprocessor deadline-monotonic (DM) scheduling algorithm
where the immediate ceiling priority protocol (ICPP) is used for handling shared resources. State
the steps to compute the blocking factor (Bi) of a given task τi. (3 points)

PROBLEM 7

There are two approaches for scheduling tasks on multiprocessor platform: the partitioned approach and
the global approach. The table below shows Ci (WCET) and Ti (period) for six periodic tasks to be
scheduled on m = 3 processors. The relative deadline of each periodic task is equal to its period.

Ci Ti

τ1 2 10
τ2 10 25
τ3 12 30
τ4 5 10
τ5 8 20
τ6 7 100

a) The task set is schedulable using rate-monotonic first-fit (RMFF) partitioned scheduling algorithm.
Show how the task set is partitioned on m = 3 processors so that all the deadlines are met using
RMFF scheduling? (3 points)

b) Now consider that task τ2 is removed from the task set and another task τ7 with C7 = 3 is added
to the system. The task set now again has total six tasks. Determine the smallest possible period
T7 of task τ7 so that all the six tasks are RMFF schedulable on m = 3 processors. Show your
calculation. (4 points)

c) Describe how the RM-US priority-assignment policy avoids Dhall’s effect. (3 points)



Scheduling Diagram Template Problem 4 (a)
(Submit this page with rest of the solutions)



Template Code for Problem 4 (b)
(Submit this page with rest of the solutions)

#include "TinyTimber.h"

typedef struct{
Object super;
char *id;

} RTprocess;

Object app = initObject();
RTprocess rtp1 = {initObject(), "T1"};
RTprocess rtp2 = {initObject(), "J1"};
RTprocess rtp3 = {initObject(), "T2"};

void exec1(RTprocess *self, int u) {

work1(); // executes for 10ms

}

void exec2(RTprocess *self, int u) {

work2(); // executes for 20ms

}

void exec3(RTprocess *self, int u) {

work3(); // executes for 40ms

}

void kickoff(RTprocess *self, int u) {

}

main() {
return TINYTIMBER(&app, kickoff, 0);

}


