Real-Time Systems - eda222/Dit161

Solutions to final exam March 10, 2014

PROBLEM 1

a) True: No scheduling algorithm can schedule a task set that requires more 100% capacity of the platform.
b) True: Due to fixed-priority based scheme, an upper bound on queuing delay can be computed.
c) False: No such test is known so far since the critical instant is not yet known.
d) False: Hard real-time guarantee can be provided for sporadic tasks since the inter-arrival time of consecutive jobs has a lower bound.
e) FALSE: There is no deadlock in non-preemptive scheduling since we cannot have a circular wait.
f) FALSE: Interrupts are local to each processor, i.e., applicable in uniprocessor system.

PROBLEM 2

a) See lecture notes for Lecture 5 (slide 3-4).
b) See lecture notes for Lecture 4 (slide 18).

PROBLEM 3

a) The WCET of main is dependent on the WCET of functions "FuncA", "FuncB", and "FuncC". "FuncA" calculates the Greatest Common Devisor of two values. "FuncC" looks for a value in an array of sorted elements using binary search algorithm.

WCET of "main":

$$
\begin{aligned}
& W C E T(\text { main })=\{\text { Dec, Flag }\}+\{\text { Dec, result }\}+\{\text { Dec }, P\}+\{D e c, Q\}+\{D e c, \text { find }\}+\{\text { Dec, count }\} \\
& +\{\text { Dec, data }\}+\{\text { Assign, data }[6]\}+\{\text { Assign, count }=6\}+\{\text { Assign }, P=-16\}+\{\text { Assign }, Q=12\} \\
& +\left\{\text { Assign }, F l a g={ }^{\prime} F^{\prime}\right\}+\{a b s, a b s(P)\}+\{\bmod ,(a b s(P) \% Q)\}+\{\operatorname{Comp},(a b s(P) \% Q)!=0\} \\
& +\{a b s, a b s(P)\}+\{\text { call, FuncA }(\operatorname{abs}(P), Q)\}+\operatorname{WCET}(\operatorname{FuncA}(16,12)) \\
& +\{\text { Assign, find }=\text { FuncA }(\operatorname{abs}(P), Q)\}+\{\text { sub, count }-1\}+\{\text { call, FuncC }(\text { data, find, }, \text {, count }-1)\} \\
& +W C E T(\text { FuncC }(\text { data }, 4,0,5))+\{\text { assign, result }=\text { FuncC(data, find, } 0, \text { count }-1)\} \\
& +\{\text { comp }, \text { result }==-1\}+\{\text { comp, result }<=16\}+\{\text { assign, Flag }=T\}+\{\text { return }, 2\} \\
& =45+W C E T(\text { FuncA }(16,12))+W C E T(\text { FuncC }(\text { data }, 4,0,5))
\end{aligned}
$$

WCET of "FuncA": There are two cases for calculating the WCET of FuncA: Case(i) y $==0$, Case(ii) $\mathrm{y}!=0$.

```
\(\operatorname{Case}(i) W C E T(F u n c A(x, y==0))=\{\operatorname{Comp}, y==0\}+\{\) return,\(x\}=2+2=4\)
\(\operatorname{Case}(i i) W C E T(F u n c A(x=16, y=12))=\{\operatorname{Comp}, y==0\}+\{\bmod , x \% y\}+\{\operatorname{call}, F u n c A(y, x \% y)\}\)
\(+\operatorname{WCET}(\) FuncA \((12,16 \% 12))+\{\) return, \(F u n c A(y, x \% y)\}\)
\(=11+W C E T(\) FuncA \((12,16 \% 12))\)
```

$W \operatorname{CET}(F u n c A(x=12, y=16 \% 12))=\{\operatorname{Comp}, y==0\}+\{\bmod , x \% y\}+\{\operatorname{call}, F u n c A(y, x \% y)\}$
$+W C E T(F u n c A(4,12 \% 4))+\{$ return,$F u n c A(y, x \% y)\}$
$=11+W C E T($ FuncA $(4,12 \% 4))$
$=>$
$W C E T(\operatorname{FuncA}(16,12))=11+11+4=26$

WCET of "FuncC":

```
\(W \operatorname{CET}(\) FuncC \((\) data \(, x=4, y=0, z=5))=\{\) Dec, start \(\}+\{\) Dec, end \(\}+\{\) Dec, mid \(\}+\{\) assign, start \(=0\}\)
\(+\{\) assign, end \(=5\}+\{\) sub, end - start \(\}+\{\) div, \((\) end - start \() / 2\}+\{\) add, start \(+(\) end - start \() / 2\}\)
\(+\{\) assign, mid \(=\) start \(+(\) end - start \() / 2)\}+\{\) Comp, start \(>\) end \(\}+\{\) Comp, data \([\) mid \(]==x\}\)
\(+\{\) Comp, data \([\) mid \(]>x\}+\{\) add, mid +1\(\}+\{\) call, FuncC \((\) data,\(x\), mid +1, end \()\}\)
\(+W C E T(\) FuncC \((\) data \(, 4,3,5))+\{\) return,\(F u n c C(\) data,\(x\), mid +1, end \()\}\)
\(=29+W C E T(F u n c C(\) data \(, 4,3,5))\)
```

$W \operatorname{CET}($ FuncC $($ data $, x=4, y=3, z=5))=\{$ Dec, start $\}+\{$ Dec, end $\}+\{$ Dec, mid $\}+\{$ assign, start $=3\}$
$+\{$ assign, end $=5\}+\{$ sub, end - start $\}+\{$ div, $($ end - start $) / 2\}+\{$ add, start $+($ end - start $) / 2\}$
$+\{$ assign, mid $=$ start $+($ end - start $) / 2)\}+\{$ Comp, start $>$ end $\}+\{$ Comp, data $[$ mid $]==x\}$
$+\{$ Comp, data $[$ mid $]>x\}+\{$ sub, mid -1$\}+\{$ call, FuncC $($ data,x, start, mid -1$)\}$
$+\operatorname{WCET}($ FuncC $($ data $, 4,3,3))+\{$ return, FuncC $($ data, , start, mid -1$)\}$
$=29+W C E T($ FuncC(data $, 4,3,3))$

```
\(W C E T(\) FuncC \((\) data \(, x=4, y=3, z=3))=\{\) Dec, start \(\}+\{D e c, e n d\}+\{\) Dec, mid \(\}+\{\) assign, start \(=3\}\)
\(+\{\) assign, end \(=5\}+\{\) sub, end - start \(\}+\{\) div, \((\) end - start \() / 2\}+\{\) add, start \(+(\) end - start \() / 2\}\)
\(+\{\) assign, mid \(=\) start \(+(\) end - start \() / 2)\}+\{\operatorname{Comp}\), start \(>\) end \(\}+\{\operatorname{Comp}\), data \([\) mid \(]=x\}\)
\(+\{\operatorname{call}, F u n c B(\) data \([\) mid \(])\}+W C E T(F u n c B(\) data \([3]))+\{\) return,\(F u n c B(\) data \([\) mid \(])\}\)
\(=24+W C E T(F u n c B(\) data \([3]))\)
\(=>\)
\(W C E T(F u n c C(\) data \(, 4,0,5))=29+29+24+W C E T(F u n c B(d a t a[3]))\)
\(=82+W C E T(F u n c B(\) data \([3]))\)
```


WCET of "FuncB":

$W C E T(F u n c B(y=4))=\{D e c, z\}+\{$ Assign, $z=2\}+\{\operatorname{comp}, 4==0\}+\{\operatorname{comp}, 4>1\}+\{$ mul, $2 * 2\}$
$+\{$ assign, $4=2 * 2\}+\{$ sub, $4-1\}+\{$ assign, $3=4-1\}+\{\operatorname{comp}, 3>1\}+\{$ mul, $4 * 4\}$
$+\{$ assign, $16=4 * 4\}+\{$ sub, $3-1\}+\{$ assign, $2=3-1\}+\{$ comp, $2>1\}+\{$ mul, $16 * 16\}$
$+\{$ assign, $256=16 * 16\}+\{$ sub, $2-1\}+\{$ assign, $1=2-1\}+\{$ comp, $1>1\}+\{$ return, 2$\}$
$=41$

WCET of "main":

$$
\begin{aligned}
& \text { WCET }(\text { main })=45+W C E T(F u n c A(16,12))+W C E T(F u n c C(\text { data }, 4,0,5)) \\
& =45+26+82+41=194
\end{aligned}
$$

The deadline is missed
b) According to the inputs provided here, the false paths are:

- The condition " $\mathrm{if}(\operatorname{abs}(\mathrm{P}) \% \mathrm{Q}!=0)$ " in the main function is always true, so "find=Q" is a false path.
- In the main function, "result" is equal to 256 , so the condition "if(result==-1)" is always false which makes "return -1" a false path.
- In the main function, result is equal to 256 so the condition "if(result $\mathrm{i}=16$)" is always false which makes "Flag $=\mathrm{T}$ and return 1 " two false paths.
- In FuncB, the initial value for y is 4 , so the condition " $\mathrm{if}(\mathrm{y}==0)$ " is always false which makes "return 1" a false path.
- In FuncC, the value of start is never greater than end, thus "return -1" is a false path.

PROBLEM 4

```
a) #include "TinyTimber.h"
typedef struct{
    Object super;
    char *id;
} RTprocess;
Object app = initObject();
RTprocess rtp1 = {initObject(), "T1"};
RTprocess rtp2 = {initObject(), "J1"};
RTprocess rtp3 = {initObject(), "T2"};
void exec1(RTprocess *self, int u) {
    SEND(MSEC(60), MSEC(10), self, exec1, 0);
    SEND(MSEC(10), MSEC(20), &rtp2, exec2, 0);
    work1(); // executes for 10ms
}
void exec2(RTprocess *self, int u) {
    work2(); // executes for 20ms
}
void exec3(RTprocess *self, int u) {
    SEND(MSEC(60), MSEC(0), self, exec3, 0); // or AFTER(MSEC(60), self, exec3, 0);
    work3(); // executes for 40ms
}
void kickoff(RTprocess *self, int u) {
    SEND(MSEC(0), MSEC(10), &rtp1, exec1, 0);
    SEND(MSEC(30), MSEC(0), &rtp3, exec3, 0); // or AFTER(MSEC(30), &rtp3, exec3, 0);
}
main() {
    return TINYTIMBER(&app, kickoff, 0);
}
```

b) The timing diagram is shown below:

PROBLEM 5

a) The DM priority ordering is as follows: τ_{1} is highest, τ_{2} is the medium, and τ_{1} is the lowest priority task. By simulating the DM schedule of the tasks, if $C_{3}=3$, then there is a deadline miss at time $t=14$. By simulating the DM schedule of the tasks, if $C_{3}=2$, then all deadlines are met.
Since the same schedule in time 0 to 12 is repeated again from time $t=12$, we have to generate the table from time $t=0$ to $t=12$. Within $[0,12)$, the three tasks are executed as follows: task τ_{1} executes in $(1,2),(4,5),(7,8)$, and $(10,11)$; task τ_{2} executes in $(0,1),(5,6)$, and $(8,9)$; and task τ_{3} executes in $(2,4),(9,10),(11,12)$.
b) See lecture notes for Lecture 10 (slide 21-22).
c) See lecture notes for Lecture 10 (slide 7).

PROBLEM 6

a) Yes. The utilization bound of EDF is 100% when $D_{i}=T_{i}$ for all tasks. A DM-schedulable task set must have total utilization not larger than 100%.
b) We have to apply processor demand analysis. The least common multiple of the periods is 20 . The set of control points for task τ_{1} is $K_{1}=\{5,10,15,20\}$. The set of control points for task τ_{2} is $K_{2}=\{6,16\}$. Finally, the set of control points for task τ_{3} is $K_{3}=\left\{2 C_{3}\right\}$ since $2 C_{3}+T_{3}>20$. Therefore, the set of all the control points for all the tasks is

$$
K=K_{1} \cup K_{2} \cup K_{3}=\{5,6,10,15,16,20\} \cup\left\{2 C_{3}\right\}
$$

Since $C_{3} \geq 5$, the value of the control point $2 C_{3}$ must satisfy $2 C_{3} \geq 10$.
The processor demand for $L=5$ is

$$
\begin{align*}
& \left(\left\lfloor\frac{5-D_{1}}{T_{1}}\right\rfloor+1\right) \cdot C_{1}+\left(\left\lfloor\frac{5-D_{2}}{T_{2}}\right\rfloor+1\right) \cdot C_{2}+\left(\left\lfloor\frac{5-D_{3}}{T_{3}}\right\rfloor+1\right) \cdot C_{3} \\
& =\left(\left\lfloor\frac{5-5}{5}\right\rfloor+1\right) \cdot 2+\left(\left\lfloor\frac{5-6}{10}\right\rfloor+1\right) \cdot 3+\left(\left\lfloor\frac{5-2 C 3}{20}\right\rfloor+1\right) \cdot C_{3}=2 \leq L=5 \tag{OK!}
\end{align*}
$$

The processor demand for $L=6$ is

$$
\begin{align*}
& \left(\left\lfloor\frac{6-D_{1}}{T_{1}}\right\rfloor+1\right) \cdot C_{1}+\left(\left\lfloor\frac{6-D_{2}}{T_{2}}\right\rfloor+1\right) \cdot C_{2}+\left(\left\lfloor\frac{6-D_{3}}{T_{3}}\right\rfloor+1\right) \cdot C_{3} \\
& =\left(\left\lfloor\frac{6-5}{5}\right\rfloor+1\right) \cdot 2+\left(\left\lfloor\frac{6-6}{10}\right\rfloor+1\right) \cdot 3+\left(\left\lfloor\frac{6-2 C 3}{20}\right\rfloor+1\right) \cdot C_{3}=2+3=5 \leq L=6 \tag{OK!}
\end{align*}
$$

The processor demand for $L=10$ (assuming that $2 C_{3}=10$) is

$$
\begin{aligned}
& \left(\left\lfloor\frac{10-5}{5}\right\rfloor+1\right) \cdot 2+\left(\left\lfloor\frac{10-6}{10}\right\rfloor+1\right) \cdot 3+\left(\left\lfloor\frac{10-2 C 3}{20}\right\rfloor+1\right) \cdot C_{3} \\
& =4+3+C_{3}=7+C_{3}=7+5=12>L=10 \quad(\text { NOT OK! })
\end{aligned}
$$

Therefore, to guarantee schedulability, we must have $2 C_{3}>10$. Since C_{3} is an integer, the next possible choice of $2 C_{3}$ is 12 . Consequently, the control point for $2 C_{3}$ is $2 C_{3}=12$. The processor demand for $L=12$ (assuming $2 C_{3}=12$) is

$$
\begin{aligned}
& \left(\left\lfloor\frac{12-5}{5}\right\rfloor+1\right) \cdot 2+\left(\left\lfloor\frac{12-6}{10}\right\rfloor+1\right) \cdot 3+\left(\left\lfloor\frac{12-2 C 3}{20}\right\rfloor+1\right) \cdot C_{3} \\
& =4+3+C_{3}=7+C_{3}=7+6=13>L=12 \quad(\text { NOT OK! })
\end{aligned}
$$

Therefore, to guarantee schedulability, we must have $2 C_{3}>12$. Since C_{3} is an integer, the next possible choice of $2 C_{3}$ is 14 . Consequently, the control point for $2 C_{3}$ is $2 C_{3}=14$. The processor demand for $L=14$ (assuming $2 C_{3}=14$) is

$$
\begin{aligned}
& \left(\left\lfloor\frac{14-5}{5}\right\rfloor+1\right) \cdot 2+\left(\left\lfloor\frac{14-6}{10}\right\rfloor+1\right) \cdot 3+\left(\left\lfloor\frac{14-2 C 3}{20}\right\rfloor+1\right) \cdot C_{3} \\
& =4+3+C_{3}=7+C_{3}=7+7=14<=L=14 \quad(O K!)
\end{aligned}
$$

The next control points in K is at $L=15$. The processor demand for $L=15$ (assuming $2 C_{3}=14$) is

$$
\begin{aligned}
& \left(\left\lfloor\frac{15-5}{5}\right\rfloor+1\right) \cdot 2+\left(\left\lfloor\frac{15-6}{10}\right\rfloor+1\right) \cdot 3+\left(\left\lfloor\frac{15-2 C 3}{20}\right\rfloor+1\right) \cdot C_{3} \\
& =6+3+7=16>L=15 \quad(\text { NOT OK! })
\end{aligned}
$$

Since $7 \geq C_{3} \geq 5$, the task set is not EDF schedulable.
c) See lecture notes for Lecture 12 (slide 17).

PROBLEM 7

a) The utilization of the tasks are

	C_{i}	T_{i}	u_{i}
τ_{1}	2	10	0.2
τ_{2}	10	25	0.4
τ_{3}	12	30	0.4
τ_{4}	5	10	0.5
τ_{5}	8	20	0.4
τ_{6}	7	100	0.07

The order of allocation (based in increasing period) is $\tau_{1}, \tau_{4}, \tau_{5}, \tau_{2}, \tau_{3}$ and τ_{6}. The three processors are indexed as P_{1}, P_{2}, and P_{3}.
Task τ_{1} can be allocated to P_{1} since there is no other tasks in P_{1}.
Task τ_{4} can also be allocated to P_{1} since $u_{1}+u_{4}=0.2+0.5<=2 \cdot\left(2^{\frac{1}{2}}-1\right)=0.824$.
Task τ_{5} cannot be allocated to P_{1} since $u_{1}+u_{4}+u_{5}=0.2+0.5+0.4>1$. Task τ_{5} can be allocated to P_{2} since there is no other task in P_{2}.
Task τ_{2} cannot be allocated to P_{1} since $u_{1}+u_{4}+u_{2}=0.2+0.5+0.4>1$. Task τ_{4} can be allocated to P_{2} since $u_{5}+u_{2}=0.4+0.4<=0.824$.

Task τ_{3} cannot be allocated to P_{1} since $u_{1}+u_{4}+u_{3}=0.2+0.5+0.4>1$. Task τ_{3} cannot be allocated to P_{2} since $u_{5}+u_{2}+u_{3}=0.4+0.4+0.4>1$. Task τ_{3} can be allocated to P_{3} since there is no other task in P_{3}.

Task τ_{6} can be allocated to P_{1} since $u_{1}+u_{4}+u_{6}=0.2+0.5+0.07=0.77<=3 \cdot\left(2^{\frac{1}{3}}-1\right)=0.779$.
So, the final allocation is as follows:
P_{1} gets τ_{1}, τ_{4}, and τ_{6}.
P_{2} gets τ_{5} and τ_{2}.
P_{3} gets τ_{3}.
b) Task τ_{2} is removed from the task set. The new task τ_{7} has WCET $C_{7}=3$. The smallest possible period T_{7} is 3 . In such case the utilization is $u_{7}=1$. We have to check if a successful allocation using RMFF exists.

The order of allocation (in order of increasing period) is $\tau_{7}, \tau_{1}, \tau_{4}, \tau_{5}, \tau_{3}$ and τ_{6}. The three processors are indexed as P_{1}, P_{2}, and P_{3}.
Task τ_{7} can be allocated to P_{1} since there is no other tasks in P_{1}.
Task τ_{1} cannot be allocated to P_{1} since P_{1} is full. Task τ_{1} can be allocated to P_{2} since there is no other task in P_{2}.
Task τ_{4} cannot be allocated to P_{1} since P_{1} is full. Task τ_{4} can be allocated to P_{2} since $u_{1}+u_{4}=$ $0.2+0.5<=2 \cdot\left(2^{\frac{1}{2}}-1\right)=0.824$.
Task τ_{5} cannot be allocated to P_{1} since P_{1} is full. Task τ_{5} cannot be allocated to P_{2} since $u_{1}+u_{4}+u_{5}=0.2+0.5+0.4>1$. Task τ_{5} can be allocated to P_{3} since there is no other task in P_{3}.
Task τ_{3} cannot be allocated to P_{1} since P_{1} is full. Task τ_{3} cannot be allocated to P_{2} since since $u_{1}+u_{4}+u_{3}=0.2+0.5+0.4>1$. Task τ_{3} can be allocated to P_{3} since $u_{5}+u_{3}=0.4+0.4<=$ $2 \cdot\left(2^{\frac{1}{2}}-1\right)=0.824$.
Task τ_{6} cannot be allocated to P_{1} since P_{1} us full. Task τ_{6} can be allocated to P_{2} since $u_{1}+u_{4}+u_{6}=$ $0.2+0.5+0.07=0.77<=3 \cdot\left(2^{\frac{1}{3}}-1\right)=0.779$.
So, the final allocation is as follows:
P_{1} gets τ_{7}.
P_{2} gets τ_{1}, τ_{4}, and τ_{6}.
P_{3} gets τ_{5} and τ_{3}.
Since the allocation is successful, the smallest period T_{7} is $T_{7}=C_{7}=3$.
c) See lecture notes for Lecture 14 (slide 22).

