
Real-Time Systems — EDA222/DIT161

Final Exam, March 14, 2013 at 8:30 – 12:30 in the M building

Examiner:
Professor Jan Jonsson

Questions:
Risat Pathan, phone: 076 214 8509

Aids permitted during the exam:
J. Nordlander, Programming with the TinyTimber kernel

Chalmers-approved calculator

Content:
The written exam consists of 8 pages (including cover), containing 7 problems
worth a total of 60 points.

Grading policy:
24–35 ⇒ grade 3
36–47 ⇒ grade 4
48–60 ⇒ grade 5

Solution:
Posted on the course home page on Friday, March 15, 2013 at 09:00

Results:
Posted on the course home page on Thursday, April 4, 2013 at 09:00.

Inspection:
Room 5128, Rännvägen 6 B, on Thursday, April 4, 2013 at 13:00–15:00. Inspection at
another occasion could be arranged by contacting the course examiner.

Language:
Your solutions should be written in English.

IMPORTANT ISSUES

1. Use separate sheets for each answered problem, and mark each sheet with the problem number.

2. Justify all answers. Lack of justification can lead to loss of credit even if the answer might be
correct.

3. Explain all calculations thoroughly. If justification and method is correct then simple calculation
mistakes do not necessarily lead to loss of credit.

4. If some assumptions in a problem are missing or you consider that the made assumptions are
unclear, then please state explicitly which assumptions you make in order to find a solution.

5. Write clearly! If I cannot read your solution, I will assume that it is wrong.

Good Luck!



PROBLEM 1

State whether the following propositions are True or False. Each correct statement will give 0.5
points; each erroneous statement will give -0.5 points; an omitted statement gives 0 points. Although
a motivation for a correct answer is not required, a convincing one gives another 0.5 points, while an
erroneous/weak one gives another -0.5 points. Quality guarantee: The total result for this problem
cannot be less than 0 points. (6 points)

a) There is no multiprocessor scheduling algorithm with 100% resource utilization.

b) Ada protected objects use condition variables to implement synchronization.

c) The response-time test for global fixed-priority scheduling is an exact feasibility test.

d) Special resource sharing protocols are used for mutual exclusion in both preemptive and non-preemptive
scheduling algorithms.

e) Switched Ethernet with deterministic queuing policies for input and output buffers in the switches
guarantees bounded queuing delay.

f) Priority ceiling protocol (PCP) and immediate ceiling priority protocol (ICPP) are both deadlock
free protocols.

PROBLEM 2

A fundamental prerequisite for correct concurrent execution of multiple tasks with shared resources is
that the run-time system can guarantee mutual exclusion.

a) State the four conditions for deadlock to occur? (4 points)

b) State the techniques offered at the machine level to provide mutual exclusion in single processor and
multiprocessors? (2 points)

PROBLEM 3

Most scheduling analysis techniques assume the worst-case execution time (WCET) to model the com-
putational demand of a real-time task. One of the earliest methods for WCET analysis was presented by
Shaw in the end of the 1980s. Assume that the function main (see below) is used as part of a real-time
program and that the function, when called, is allowed to take at most 140 µs to execute where.

• Each declaration and assignment statement costs 1 µs to execute.

• A function call costs 2 µs plus WCET for the function in question.

• Each compare statement costs 2 µs.

• Each addition and subtraction operation costs 3 µs.

• Each multiplication operation costs 4 µs.

• Each return statement costs 2 µs.

• Each modulo operation costs 5 µs.

• The function abs() is predefined and costs 5 µs. This function computes and returns the absolute
value of the number given as its parameter. For example, abs(-5) returns 5. Assume that the
overhead to call function abs() is already included in its WCET estimation.

• All other language constructs can be assumed to take 0 µs to execute.



int FuncA(int x){

if(x == 0)

return 1;

else

return (x * FuncA (x - 1));

}

int FuncB(int y){

int z;

z = abs(y);

if((z % 3) != 0){

if (((z % 3) % 2) != 0)

return z - 1;

else

return z + 1;

}

return z;

}

int main(){

char Flag;

int result;

int P;

int Q;

P = -3;

Q = -1;

if((FuncB(Q) % 3) != 0)

result = abs(P);

else

result = FuncA(abs(P) + FuncB(Q));

if (result)

Flag = ’T’;

else

Flag = ’F’;

return 1;

}

a) Derive WCET for function main by using Shaw’s method and check whether the function’s deadline
will be met or not. (8 points)

b) Identify all the false paths in the problem given in subproblem a) (2 points)



PROBLEM 4
(This question is only for students registered in academic year 2011/2012 or 2012/2013)

With the TinyTimber kernel it is possible to implement periodic activities in a C program. Consider
a clock with three hands: second, minute, and hour. Use the 12-hour hh:mm:ss time format (i.e., the
minimum value is 00:00:00 and the maximum is 11:59:59). Each time the hour hand advances, a
bell mechanism executes, and it takes three seconds to finish it. The table below shows the full timing
specification for the clock hands.

Hand Offset Period Deadline Execution Time
Second 1s 1s 250ms 250ms
Minute 1m 1m 250ms 250ms
Hour 1h 1h 5s 3s

(ms – millisecond, s – second, m – minute, h – hour)

On a separate sheet at the end of this exam paper you find a C-code template. Write your solutions
to the following subproblems directly on that sheet and hand it in for grading together with the rest of
your solutions. The code for the function bell() is assumed to already exist.

a) Implement the clock using the template given at the end of this exam paper. Each hand is an
independent task complying with the specification in the table given above. The clock starts at
00:00:00. (4 points)

b) Draw a schedule (i.e., timing diagram) for the three tasks assuming a starting point at 01:59:58

and an end point at 02:00:07. (4 points)

PROBLEM 4
(This question is only for students registered in academic year 2010/2011 or earlier)

a) Explain the purpose of the ADA pragma Volatile. Give an example of a proper use of the pragma
in a program. (3 points)

b) Write a protected object Circular Buffer that handles a circular buffer with room for 100 data
records of type Data using the following template. The protected object should have two entries,
Put and Get. Producer tasks should be able to insert data records in the buffer via entry Put. If
the buffer is full, a task that calls Put should be blocked. Consumer tasks should be able to remove
data records from the buffer via entry Get. If the buffer is empty, a task that calls Get should be
blocked. (5 points)

type Buffer is array (Integer range <>) of Data;

protected type Circular_Buffer is

entry Put(D : in Data);

entry Get(D : out Data);

private

N : constant := 100;

A : Buffer(1..N);

... ... ...

end Circular_Buffer;



protected body Circular_Buffer is

... ... ...

end Circular_Buffer;

PROBLEM 5

There are two approaches for scheduling tasks on multiprocessor platform: the partitioned approach and
the global approach. The table below shows Ci (WCET) and Ti (period) for the six periodic tasks of a
real-time application. The relative deadline of each task is equal to its period.

Ci Ti

τ1 1 10
τ2 2 20
τ3 2 4
τ4 30 100
τ5 8 25
τ6 6 19

Consider that there are two different choices of multiprocessor platform available in the market for
implementing the application. The first choice (called Type-A multiprocessor platform) has 4 single
processors hosted on the same platform while the second choice (called Type-B multiprocessor platform)
has 8 single processors hosted on the same platform. The price of Type-B multiprocessor is 500 SEK
higher than the price of Type-A multiprocessor. You, as the system designer, can use either RM-US global
scheduling or RMFF partitioned scheduling.

a) Which scheduling algorithm and which type of multiprocessor platform you will select for implement-
ing the system such that all the deadlines of the tasks are met? Motivate your answer. (7 points)

b) Global fixed-priority scheduling under rate-monotonic (RM) priority assignment has weak theoretical
framework. Explain two underlying causes for such weak theoretical framework of global fixed-
priority scheduling. (3 points)

PROBLEM 6

There are two different paradigms for scheduling tasks on uniprocessor: static scheduling and dynamic
scheduling.

a) Write one advantage and one disadvantage of static scheduling? How is the schedule generated in
static scheduling? (4 points)

b) Consider a task set having four periodic tasks τ1, τ2, τ3 and τ4 such that the periods T1, T2, T3 and
T4 of the four tasks are related as follows:

T2 = 2T1 T3 = 4T1 T4 = 8T1

The relative deadline of each task is equal to its period. The WCET of the tasks are such that
the total utilization of the task set is 1. Show that this task set is schedulable using uniprocessor
rate-monotonic (RM) scheduling algorithm. (6 points)



c) Consider a task set that is schedulable using deadline-monotonic (DM) scheduling algorithm on
uniprocessor where the offset for at least one task is positive. Can we also guarantee that this task
set is schedulable using DM if the offset of each task is zero? Why or why not? (2 points)

PROBLEM 7

Consider a real-time system with three periodic tasks and a run-time system that employs uniprocessor
preemptive scheduling using the deadline-monotonic (DM) priority-assignment approach. The table
below shows Ci (WCET), Di (deadline) and Ti (period) for the three tasks. The initial arrival time of
each task is not known. All values are given in milliseconds.

Ci Di Ti

τ1 8 18 18
τ2 6 17 28
τ3 5 ? 30

The value of D3 is greater than 20, i.e., D3 > 20. The three tasks are not independent, but share two
exclusive resources Ra and Rb. The run-time system employs the Immediate Ceiling Priority Protocol
(ICPP) to resolve resource request conflicts. The tasks use the resources in the following way:

• Task τ1 first requests Ra and then, while using Ra, requests Rb; then, after releasing the two
resources, τ1 again requests only Ra.

• Task τ2 requests Rb; and after releasing Rb, requests Ra

• Task τ3 requests Ra.

The table below shows Hi,j , the maximum time (in milliseconds) that task τi locks resource Rj during
its execution.

Hi,a Hi,b

τ1 2 3
τ2 1 4
τ3 3 -

Use a suitable analysis method to determine the minimum value of D3 such that the tasks in the system
are schedulable. (8 points)



Template Code for Problem 4
(Submit this page with rest of the solutions)

#include "TinyTimber.h"

typedef struct{
Object super;
int value;

} PeriodicTask;

Object app = initObject();
PeriodicTask pt1 = {initObject(), 0};
PeriodicTask pt2 = {initObject(), 0};
PeriodicTask pt3 = {initObject(), 0};

void advance1(PeriodicTask *self, int period) {

}

void advance2(PeriodicTask *self, int period) {

bell();

}

void kickoff(PeriodicTask *self, int unused) {

}

main() {
return TINYTIMBER(&app, kickoff, 0);

}


