
Real-Time Systems — EDA222/DIT161

Solutions to final exam March 14, 2013

PROBLEM 1

a) False: No global or partitioned multiprocessor fixed-priority scheduling can have a utilization bound
greater than 50%. But the pfair scheduling guarantees 100% resource scheduling.

b) False: Monitors use condition variables to implement synchronization.

c) False: The response-time test for global fixed-priority scheduling is a sufficient feasibility test since
one extra instance of each higher-priority task must be (pessimistically) accounted for in the
interference analysis.

d) False: Mutual exclusion is automatically ensured in non-preemptive scheduling algorithms; hence,
does not need any special resource sharing protocol.

e) True: Deterministic queuing policies guarantees an upper bound on queuing delay.

f) True: Priority ceiling protocol (PCP) and immediate ceiling priority protocol (ICPP) are both
deadlock free protocols.

PROBLEM 2

a) See lecture notes for Lecture 4 (slide 7).

b) See lecture notes for Lecture 4 (slide 22).

PROBLEM 3

a) The WCET of main is dependent on the WCET of functions “FuncA” and “FuncB”. So, we first
calculate the WCET of functions “FuncA” and “FuncB”.

WCET of “FuncA”: There are two cases for calculating the WCET of FuncA. Case(i), x == 0
case(ii) x! = 0.

Case(i)WCET (FuncA(x == 0)) = {compare, x == 0}+ {return} = 2 + 2 = 4

Case(ii)WCET (FuncA(x)) = {compare, x == 0}+ {sub, x− 1}+ {call, FuncA(x− 1)}
+WCET (FuncA(x− 1)) + {multiply, x ∗ FuncA(x− 1)}+ {return}
= 2 + 3 + 2 +WCET (FuncA(x− 1)) + 4 + 2

= 13 +WCET (FuncA(x− 1))

WCET of “FuncB”: There are two cases for calculating the WCET of FuncB: Case(i) z is a
multiple of 3, Case(ii) z is not a multiple of 3



Case(i)WCET (FuncB(y)) = {Dec, z}+ {abs, y}+ {Assign, z = abs(y)}
+ {mod, z%3}+ {Compare, (z%3)! = 0}+ {return}
= 1 + 5 + 1 + 5 + 2 + 2 = 16

Case(ii)WCET (FuncB(y)) = {Dec, z}+ {abs, y}+ {Assign, z = abs(y)}
+ {mod, z%3}+ {Compare, (z%3)! = 0}+ {mod, z%3}+ {mod, (z%3)%2}
+ {Compare, ((z%3)%2)! = 0}+ {add or sub, (z − 1) or (z + 1)}+ {return}
= 1 + 5 + 1 + 5 + 2 + 5 + 5 + 2 + 3 + 2 = 31

WCET of “main”: Now we can calculate the WCET of main.

WCET (main) = {Dec, F lag}+ {Dec, result}+ {Dec, P}+ {Dec,Q}
+ {Assign, P = −3}+ {Assign,Q = −1}+ {mod, FuncB(−1)%3}
+ {call, FuncB(−1)}+WCET (FuncB(−1)) + {Compare, (FuncB(−1)%3)! = 0}
+

CASE1((FuncB(−1)%3)! = 0): {abs, abs(-3)}+{Assign, result}
Or,

CASE2((FuncB(−1)%3) == 0):

{abs, abs(−3)}+ {call, FuncB(−1)}+WCET (FuncB(−1))

+ {add, abs(−3) + FuncB(−1)}+ {call, FuncA(abs(−3) + FuncB(−1))}
+WCET (FucA(abs(−3) + FuncB(−1))) + {Assign, result}

+ {Compare, result}+ {Assign, F lag =′ T ′ORFlag =′ F ′}+ {return}

Note that FuncB always returns a value that is a multiple of 3. Therefore, the condition for CASE1
is never true and we can calculate the WCET(main) by only considering CASE2.

WCET (main) = 1 + 1 + 1 + 1 + 1 + 1 + 5 + 2 +WCET (FuncB(−1)) + 2 + 5 + 2

+WCET (FuncB(−1)) + 3 + 2 +WCET (FucA(abs(−3) + FuncB(−1))) + 1 + 2 + 1 + 2

= 13 +WCET (FuncB(−1)) + 9 +WCET (FuncB(−1))

+ 5 +WCET (FucA(abs(−3) + FuncB(−1))) + 6

= 33 + 2 ∗WCET (FuncB(−1)) +WCET (FucA(abs(−3) + FuncB(−1)))

= 33 + 2 ∗ 31 + 43 = 138(deadline is met)

where

WCET (FuncB(−1)) = WCET (0) = 31

and

WCET (FucA(abs(−3) + FuncB(−1))) = WCET (FucA(3 + 0)) = 43

b) The false paths are:

• The condition “if((FuncB(Q)%3)!=0)” in the main function is never true since the return
value of the “FuncB” is always a multiple of 3.

• The condition “if(result)” in the main function is always true and the statement in the else
is never executed. This is because the value for “result” is never 0 due to the characteristic
of “FuncA” which is a factorial function.



PROBLEM 4
(This question is for students registered in academic year 2011/2012 or 2012/2013)

a) #include "TinyTimber.h"

typedef struct{

Object super;

int value;

} PeriodicTask;

Object app = initObject();

PeriodicTask pt1 = {initObject(), 0};

PeriodicTask pt2 = {initObject(), 0};

PeriodicTask pt3 = {initObject(), 0};

void advance1(PeriodicTask *self, int period) {

if (self->value == 59) {

self->value = 0;

} else {

self->value += 1;

}

SEND(SEC(period), MSEC(250), self, advance1, period);

}

void advance2(PeriodicTask *self, int period) {

if (self->value == 11) {

self->value = 0;

} else {

self->value += 1;

}

bell();

SEND(SEC(period), SEC(5), self, advance2, period);

}

void kickoff(PeriodicTask *self, int unused) {

SEND(SEC(1), MSEC(250), &pt1, advance1, 1);

SEND(SEC(60), MSEC(250), &pt2, advance1, 60);

SEND(SEC(3600), SEC(5), &pt3, advance2, 3600);

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}

b) The timing diagram is shown below:



PROBLEM 4
(This question is for students registered in academic year 2010/2011 or earlier)

a) Assume a hardware port IO port represented using a type, for example, BITFIELD8 that has 8 fields
b0 ...b7 for 8 different IO pins of the port.

IO_port : BITFIELD8;

Consider the following loop code:

-- wait for device ready ...

while (IO_Port.b7 /= 0 ) loop

NULL;

end loop;

The code segment above runs the risk of being completely removed by the compiler optimization,
unless the compiler is told that the value of IO Port may change outside the program control.

On the other hand, adding the following pragma statement to the code tells the compiler that IO
Port might change and thus inhibits any optimization:

pragma Volatile(IO_Port);

b) type Buffer is array (Integer range <>) of Data;

protected type Circular_Buffer is

entry Put(D : in Data);

entry Get(D : out Data);

private

N : constant := 100;

A : Buffer(1..N);

I,J : Integer range 1..N := 1;

Count : Integer range 0..N := 0;

end Circular_Buffer;

protected body Circular_Buffer is

entry Put(D : in Data) when Count < N is begin

A(I) := D;

I := (I mod N) + 1;

Count := Count + 1;

end Put;



entry Get(D : out Data) when Count > 0 is begin

D := A(J);

J := (J mod N) + 1;

Count := Count - 1;

end Get;

end Circular_Buffer;

PROBLEM 5

a) The total utilization U of the task set is computed as follows:

U = u1 + u2 + u3 + u4 + u5 + u6

=
1

10
+

2

20
+ +

2

4
+

30

100
+

8

25
+

6

19
= 0.1 + 0.1 + 0.5 + 0.3 + 0.32 + 0.316 = 1.636

As a system designer, the decision can be made in different ways. One approach is to guide the
decision by cost factor, for example, minimize the number of processors. So, we will verify if the
task set is schedulable on Type-A processor having m = 4 single processors hosted on the same
platform. To guarantee that all the deadlines are met, we have to find the utilization bound of
RM-US and RMFF scheduling for m = 4.

Utilization bound for RM-US for m = 4 is URM−US = m2

3m−2 = 42

3·4−2 = 16
10 = 1.6. Since U >

URM−US , the task set can not be guaranteed to be schedulable on m = 4 processors using RM-US
scheduling on Type-A multiprocessor. However, the utilization bound for RM-US for m = 8 is

URM−US = m2

3m−2 = 82

3·8−2 = 64
22 ≈ 2.91. Since U ≤ URM−US , the task set is guaranteed to be

schedulable on m = 8 processors using RM-US scheduling on Type-B multiprocessor.

Utilization bound for RMFF for m = 4 is URMFF = m · (
√

2 − 1) = m · (
√

2 − 1) = 1.656. Since
U ≤ URMFF , the task set is guaranteed to be schedulable on m = 4 processors using RMFF
scheduling on Type-A multiprocessor.

So, if minimizing the cost is the only objective for the design of the system, then RMFF scheduling
on Type-A processor is the best choice.

b) See lecture notes for Lecture 15 (slide 15).

PROBLEM 6

a) See lecture notes for Lecture 11 (slides 21-23).

b) This task set is guaranteed to be schedulable using the earliest deadline first (EDF) scheduling since
EDF has a guarantee utilization bound of 1.



Now consider a tie breaking policy for EDF scheduling as follows: if different instances of multiple
tasks have the same absolute deadlines, then ties are broken by EDF giving higher priority to the
instance of the task having smallest period, i.e., according to rate-monotonic (RM) priority. EDF
scheduling with such tie breaking policy also has an utilization bound of 1 since the exact test for
EDF is not based on any assumption regarding the tie breaking policy (please see lecture 12 slide
21).

Since the period of the four tasks are integer multiple of one another, the rate-monotonic scheduling
is exactly same as the EDF scheduling with the tie breaking policy discussed in last paragraph. In
other words, the schedule generated by EDF (with the above mentioned tie breaking policy) and
the schedule generated by RM are the same if each larger period is integer multiple of each smaller
period. Therefore, a task set having periods integer multiple of one another if scheduled using
rate-monotonic scheduling has an utilization bound of 1. Consequently, the task set is schedulable
using RM.

c) No. When the offsets of all the tasks are zero, it represents the critical instant (i.e., the worst-case)
for uniprocessor DM scheduling. Therefore, a task in which no task has positive offset may not be
schedulable using DM scheduling even if the same task set is schedulable using DM where at least
one task has positive offset. (3 points)

PROBLEM 7

Define priority as follows: H = highest priority, M=medium priority and L = lowest priority. Since DM
is used and D3 > 20 > D1 > D2, the task priorities are as follows: task τ2 has highest priority H, task
τ1 has medium priority M and task τ3 has lowest priority L.

We first determine the ceiling priority for each resource:

ceil{Ra} = max{M,H,L} = H (since τ1, τ2 or τ3 uses resource Ra) (1)

ceil{Rb} = max{M,H} = H (since τ1 or τ2 uses resource Rb) (2)

We then identify, for each task τi, what tasks with lower priority may block τi and thereby cause the
corresponding blocking factor Bi. Note that nested blocking is used by task τ1. This could lead to
accumulated critical region blocking times in the final blocking factor B2.

B1 = max{H3,a} = max{3} = 3 (since τ1 may be blocked only by τ3 who uses resource Ra whose
ceiling priorities are higher than the priority of τ1)

B2 = max{H1,a +H1,b, H1,a, H3,a} = max{2 + 3, 2, 3} = 5 (since τ2 may be blocked by τ1 and τ3 that
uses resources whose ceiling priorities are higher than or equal to the priority of τ2; note accumulated
blocking time due to the nested blocking by τ1)

B3 = 0 (since τ3 has the lowest priority among all tasks, and thereby per definition cannot suffer
blocking)

We now calculate the response time of each task and compare it against the corresponding task deadline:



R2 = C2 +B2 = 6 + 5 = 11 ≤ D1 = 17 (task τ2 meets its deadline)

Assume that R0
1 = C1 = 8.

R1
1 = C1 +B1 + dR

0
1

T2
e · C2 = 8 + 3 + d 8

28
e · 6 = 17

R2
1 = C1 +B1 + dR

1
1

T2
e · C2 = 8 + 3 + d17

28
e · 6 = 17.

Since R1
1 = R2

1 = 17 ≤ D1 = 18,we have R2 = 18. (task τ1 meets its deadline)

Assume that R0
3 = C3 = 5.

R1
3 = C3 +B3 + dR

0
3

T2
e · C2 + dR

0
3

T1
e · C1 = 5 + 0 + d 5

28
e · 6 + d 5

18
e · 8 = 19

R2
3 = C3 +B3 + dR

1
3

T2
e · C2 + dR

1
3

T1
e · C1 = 5 + 0 + d19

28
e · 6 + d19

18
e · 8 = 27.

R3
3 = C3 +B3 + dR

2
3

T2
e · C2 + dR

2
3

T1
e · C1 = 5 + 0 + d27

28
e · 6 + d27

18
e · 8 = 27.

Since R2
3 = R3

3, the minimum value of D3 is 27 and R3 = 27. So, if D3 = 27, then task τ3 meets its deadline.


