
Introduction to Real-Time Systems — LET627

Final exam, June 3, 2019 at 14:00 – 18:00 in the Saga building

Examiner:
Professor Jan Jonsson, Department of Computer Science and Engineering

Responsible teacher:
Jan Jonsson, phone: 031–772 5220
Visits the exam at 15:00, and then at several occasions.

Aids permitted during the exam:
J. Nordlander, Programming with the TinyTimber kernel

Chalmers-approved calculator

Electronic dictionaries may not be used.

Content:
The written exam consists of 8 pages (including cover, list of equations and hand-in sheet),
containing 7 problems worth a total of 60 points.

Grading policy:
24–35 points ⇒ grade 3
36–47 points ⇒ grade 4
48–60 points ⇒ grade 5

Results:
When the grading is completed overall result statistics, and a time and location for inspection,
will be announced on the course home page. Individual results will be available in Ladok.

Language:
Your solutions can be written in Swedish or English.

IMPORTANT ISSUES

1. Use separate sheets for each answered problem, and mark each sheet with the problem number.

2. Justify all answers. Lack of justification can lead to loss of credit even if the answer might be
correct.

3. Explain all calculations thoroughly. If justification and method is correct then simple calculation
mistakes do not necessarily lead to loss of credit.

4. If some assumptions in a problem are missing or you consider that the made assumptions are
unclear, then please state explicitly which assumptions you make in order to find a solution.

5. Write clearly! If we cannot read your solution, we will assume that it is wrong.

6. A hand-in sheet is available at the end of the exam script. Do not forget to submit it together
with your other solution sheets!

Good Luck!

PROBLEM 1

State whether the following propositions are True or False. Each correct statement will give 0.5
points; each erroneous statement will give -0.5 points; an omitted statement gives 0 points. Although
a motivation for a correct answer is not required, a convincing one gives another 0.5 points, while an
erroneous/weak one gives another -0.5 points. Quality guarantee: The total result for this problem
cannot be less than 0 points. (6 points)

a) A necessary schedulability condition for periodic tasks in a single-processor system is that the total
utilization of the tasks is not larger than 1.

b) Hard real-time guarantee cannot be provided for systems with sporadic tasks since the inter-arrival
time of consecutive instances of the tasks is not strictly periodic.

c) For an NP-complete problem to have pseudo-polynomial time complexity the largest number in the
problem must be bounded by the input length (size) of the problem.

d) The RMFF scheduling approach has a utilization guarantee bound that converges towards 33% as
the number of processors become very large.

e) Disabling processor interrupts is a machine-level technique that is generally used to implement mutual

exclusion on multiprocessor systems.

f) If a given task set is known to be not schedulable, a necessary feasibility test will always report the
answer “no” when applied to that task set.

PROBLEM 2

In real-time systems that employ concurrent execution of multiple tasks with shared resources there is
a potential risk that deadlock may occur.

a) State the four conditions for deadlock to occur in such systems. (4 points)

b) If tasks are assigned static priorities it is possible to avoid deadlock by using a run-time protocol
that supports ceiling priorities. Describe the basic idea of a priority ceiling protocol. (4 points)

PROBLEM 3

Most scheduling analysis techniques assume the worst-case execution time (WCET) to model the com-
putational demand of a real-time task. One of the earliest methods for WCET analysis was presented
by Shaw in the end of the 1980s.

Assume that the function main (see below) is used as part of a real-time program and that the function,
when called, is allowed to take at most 90 µs to execute.

• Each declaration and assignment statement costs 1 µs to execute.

• Each function call costs 2 µs plus WCET for the function in question.

• Each evaluation of the logical condition in an if- or while-statement costs 2 µs.

• Each add and subtract operation costs 3 µs.

• Each multiply operation costs 5 µs.

• Each return statement costs 2 µs.

• All other language constructs can be assumed to take 0 µs to execute.

int times(int a, int b) {

return a * b;

}

int methA(int a, int b) {

int p;

int i;

p = a;

i = 1;

if (b == 0)

return 1;

while (i < b) {

p = times(p, a);

i = i+1;

}

return p;

}

int methB(int a, int b) {

if (b == 1)

return a;

else

return times(a, methB(a, b-1));

}

int main() {

char ans;

int x;

int y;

x = 2;

y = 3;

if (methA(x, y) > methB(x, y)) {

ans = ’T’;

x = x + y;

}

else

ans = ’F’;

return 1;

}

a) Derive WCET for function main by using Shaw’s method and determine whether or not the deadline
of the function (90 µs) will be met. (8 points)

b) Identify two different false paths in the program given above. (2 points)

PROBLEM 4

The TinyTimber kernel makes it possible to implement periodic activities in a C program. Consider a
real-time system with four independent periodic tasks: three hard-real-time tasks (T1, T2, T3), and one
soft-real-time background task BG.

The three hard-real-time tasks all arrive at t = 0 and have a common period of 2400 µs, but their
execution is precedence constrained in the following way:

• First, task T1 should execute for 300 µs. The relative deadline for task T1 is 1600µs.

• Then, task T2 should execute for 800 µs. The relative deadline for task T2 is 1200µs.

• Finally, task T3 should execute for 500 µs. The relative deadline for task T3 is 2100µs.

The soft-real-time background task BG arrives at time t = 0, has a period of 1800 µs, and at each
invocation executes for 700 µs. The relative deadline for the background task is equal to its period.

a) Construct a TinyTimber program with four methods T1(), T2(), T3(), and BG() that have the same
timing behavior as the corresponding tasks mentioned above. On a separate sheet at the end of
this exam paper you find a C-code template. Add the missing program code directly on that sheet
and hand it in for grading together with the rest of your solutions. The code for the functions
Action300(), Action800(), Action500(), and Load700() is assumed to already exist. (5 points)

b) Assuming that the TinyTimber kernel will be used to schedule the four tasks, is it possible to
guarantee that tasks T1, T2, T3 will meet their deadlines? Motivate your answer. Any timing
overhead relating to function calls or the TinyTimber runtime system can be ignored. (3 points)

PROBLEM 5

Consider a real-time system in a control application, with three independent periodic tasks. The table
below shows Ci (WCET) and Ti (period) for the three tasks. The relative deadline of each periodic task
is equal to its period. All tasks arrive at time t = 0. The tasks are allowed to preeempt each other.

Ci Ti

τ1 2 5
τ2 4 13
τ3 6 29

a) Assume a run-time system that employs preemptive single-processor scheduling using the rate-
monotonic (RM) priority-assignment approach. Use a suitable analysis method to show that all
deadlines of the tasks are met. (3 points)

b) Now, assume a run-time system with a cyclic executive that uses a time table. In order to generate
a compact cyclic time table (that is, with as few task instances per cycle as possible) for the task
set it would be preferred to be able to adjust one or more of the task periods. Luckily, the control
properties of the application allows the periods of tasks τ2 and τ3 to deviate at most ±3 time units
from the original value given in the table above. The control properties of the application also
dictate that the execution of task τ1 must not experience any jitter. Therefore, the period of task
τ1 cannot be changed, and the task must always execute as soon as it arrives.

Choose a suitable version of the task set given above (possibly modifying the period for tasks τ2
and/or τ3 within the given bounds), and construct a compact cyclic time table for the execution of
the task set version. Make sure that the chosen task set version is still schedulable if the original
periods are being modified. Your solution should clearly indicate the start and stop times for each
task instance (or task segment, if a task is preempted). In addition, the total length of your time
table (in time units) should be given. (7 points)

PROBLEM 6

Consider a real-time system with three independent periodic tasks and a run-time system that employs
preemptive single-processor scheduling using the earliest-deadline-first (EDF) priority-assignment ap-
proach. The table below shows Ci (WCET), Di (relative deadline) and Ti (period) for the three tasks.
For each task τi it applies that Ci ≤ Di ≤ Ti. All tasks arrive at time t = 0.

Ci Di Ti

τ1 4 5 10
τ2 2 D2 20
τ3 4 25 40

Apply processor-demand analysis to determine the smallest positive integer value of D2 for which all the
tasks meet their deadlines. (8 points)

PROBLEM 7

Consider a real-time system with n independent periodic tasks that should be scheduled on a multi-
processor system, using preemptive static-priority scheduling. Global scheduling is one approach for
scheduling tasks on such a system.

a) Explain the meaning of Dhall’s effect in the context of global scheduling. (2 points)

b) Describe how RM-US global scheduling is able to circumvent Dhall’s effect. (2 points)

The table below shows Ci (WCET) and Ti (period) for a task set with n = 8 periodic tasks. The relative
deadline of each periodic task is equal to its period. All tasks arrive at time t = 0.

Ci Ti

τ1 2 8
τ2 2 5
τ3 1 10
τ4 3 120
τ5 15 30
τ6 60 600
τ7 100 200
τ8 2 16

c) Determine the minimum number of processors needed to guarantee that all tasks in the task set given
above are schedulable using RM-US global scheduling. (3 points)

d) Determine a static-priority ordering of the tasks in the task set given above, assuming that RM-US
global scheduling is used and that the number of available processors is equal to the minimum
number of processors found in sub-problem c). (3 points)

List of useful expressions and equations.

2 −1)

n

n 2
1/n

−1()

1 0.41
m 2

1/2
−1()

2
m m

2

3m− 2

C

The iteration starts with a value that is guaranteed to be less

R

= C

= R
n

D

∑
∈∀

+

+=

)(

1

ihpj

j

j

n

i
i

n

i C
T

R
CR

C
P
(0,L) =

L − D
i

T
i

+1

C
i

i=1

n

∑

D≤:

•  We now have a sufficient condition for static-priority

R
i

n+1
=C

i
+
1

m

R
i

n

T
j

⋅C

j
+C

j

∀j∈hp(i)
∑

Hand-in sheet with program code for Problem 4. Anonymous code:

#include "TinyTimber.h"

typedef struct {

Object super;

} TaskObj;

TaskObj A = { initObject() };

TaskObj B = { initObject() };

void T1(TaskObj *, int);

void T2(TaskObj *, int);

void T3(TaskObj *, int);

void T1(TaskObj *self, int u) {

Action300(); // Do work for 300 microseconds

}

void T2(TaskObj *self, int u) {

Action800(); // Do work for 800 microseconds

}

void T3(TaskObj *self, int u) {

Action500(); // Do work for 500 microseconds

}

void BG(TaskObj *self, int u) {

Load700(); // Do background work for 700 microseconds

}

void kickoff(TaskObj *self, int u) {

}

main() {

return TINYTIMBER(&A, kickoff, 0);

}

