
Introduction to Real-Time Systems

Solutions to final exam June 3, 2019 (version 20190603)

PROBLEM 1

a) True: No scheduling algorithm can schedule a task set that requires more than 100% capacity of a
single-processor system.

b) False: Hard real-time guarantee can be provided for sporadic tasks since the inter-arrival time of
consecutive jobs has a lower bound.

c) False: For an NP-complete problem to have pseudo-polynomial time complexity the largest number
in the problem cannot be bounded by the input length (size) of the problem.

d) False: The utilization guarantee bound for RMFF is 41.4% of the total processor capacity.

e) False: Interrupts are local to each processor, i.e., only applicable for single-processor system.

f) False: If we know that the task set is not schedulable then a necessary test can either result in
either the outcome ’True’ or the outcome ’False’. This is because a necessary test can result in the
outcome ’True’ even though the task set is not schedulable.

PROBLEM 2

a) The four conditions for deadlock is:

• Mutual exclusion – only one task at a time can use a resource

• Hold and wait – there must be tasks that hold one resource at the same time as they request
access to another resource

• No preemption – a resource can only be released by the task holding it

• Circular wait – there must exist a cyclic chain of tasks such that each task holds a resource
that is requested by another task in the chain

b) The basic idea of a priority ceiling protocol is as follows:

• Each resource is assigned a priority ceiling equal to the priority of the highest-priority task
that can lock it.

• A task τi is allowed to enter a critical region only if its priority is higher than all priority
ceilings of the resources currently locked by tasks other than τi.

• When task τi blocks one or more higher-priority tasks, it temporarily inherits the highest
priority of the blocked tasks.

PROBLEM 3

a) In order to find the WCET of main, we need to find the WCET for the times, methA and methB

functions.

The WCET of times(a,b) is as follows:

WCET (times(a, b)) = {multiply, a ∗ b}+ {return, a ∗ b} = 5 + 2 = 7

The WCET of methA(a,b) is derived based on two cases of the value of parameter b.

Case 1: b = 0:

WCET (methA(a, b = 0)) =
{declare, p}+ {declare, i}+ {assign, p}+ {assign, i}+ {compare, b == 0}+ {return, 1}
= 1 + 1 + 1 + 1 + 2 + 2 = 8

Case 2: b > 0:

The WCET of methA for this case largely depends on the number of times the while loop executes.

Let WCET (whileLoop, b) denote the WCET of the while loop as a function of parameter b. For
the given start value of i the logical condition of the loop will be evaluated b times, which means
that the body of the loop will execute (b − 1) times. The value of WCET (whileLoop, b) is thus

WCET (whileLoop, b) =
b · {compare, i < b}+
(b− 1) · [{call, times(p, a)}+WCET (times(p, a)) + {assign, p}+ {add, i+ 1}+ {assign, i}]
= b · 2 + (b− 1) · [2 + 7 + 1 + 3 + 1] = 16 · b− 14

The WCET of methA for the case b > 0 is then:

WCET (methA(a, b > 0)) =
{declare, p}+ {declare, i}+ {assign, p}+ {assign, i}+
{compare, b == 0}+WCET (whileLoop, b) + {return, p}
= 1 + 1 + 1 + 1 + 2 + (16 · b− 14) + 2 = 16 · b− 6

The WCET of methB(a,b) is derived based on two cases of the value of parameter b.

Case 1: b = 1:
WCET (methB(a, b = 1)) =
{compare, b == 1}+ {return, a} = 2+ 2 = 4

Case 2: b > 0:

WCET (methB(a, b > 1)) =
{compare, b == 1}+
{sub, b− 1}+ {call,methB(a, b− 1)}+WCET (methB(a, b− 1))+
{call, times(a,methB(a, b− 1))}+WCET (times(a,methB(a, b− 1))+
{return, times(a,methB(a, b− 1)} = 2 + 3 + 2 +WCET (methB(a, b− 1)) + 2 + 7 + 2
= 18 +WCET (methB(a, b− 1))

The WCET of main() can now be calculated.

WCET (main()) =
{declare, ans}+ {declare, x}+ {declare, y}+ {assign, x}+ {assign, y}+
{call,methA(2, 3)}+WCET (methA(2, 3)) + {call,methB(2, 3)}+WCET (methB(2, 3))+
{compare,methA(2, 3) > methB(2, 3)}+
max({assign, ans}+ {add, x+ y}+ {assign, x}, {assign, ans})+ {return, 1}
= 1 + 1 + 1 + 1 + 1 + 2 +WCET (methA(2, 3)) + 2 +WCET (methB(2, 3))+
2 +max(1 + 3 + 1, 1) + 2
= 13 +max(5, 1) +WCET (methA(2, 3)) +WCET (methB(2, 3))

The WCET of methA(2,3) is

WCET (methA(2, 3)) = {Case 2 : b > 0} = 16 · 3− 6 = 42

The WCET of methB(2,3) is

WCET (methB(2, 3)) =
{Case 2 : b > 0} = 18 +WCET (methB(2, 2)) =
{Case 2 : b > 0} = 18 + 18 +WCET (methB(2, 1)) =
{Case 1 : b = 1} = 18 + 18 + 4 = 40

The WCET of main is then:

WCET (main()) =
= 13 +max(5, 1) +WCET (methA(2, 3)) +WCET (methB(2, 3)) =
= 13 +max(5, 1) + 42 + 40 = 95 +max(5, 1) > 90

The deadline of function main is missed, regardless of the outcome of the comparison between the
results from the methA(2,3) and methB(2,3) calls.

b) The two false paths in the program are as follows.

The first false path is in function methA, where the case b = 0 will never apply. There is only one
call to the function, in which case the value of parameter b is 3. Thus, the statement return 1 is
never executed.

The second false path is in function main, where the condition methA(x,y) > methB(x,y) will
never become true. This can be seen by observing that methA(x,y) and methB(x,y) both evaluate
the function xy (although using two different algorithms). Thus, the two statements ans = ’T’

and x = x + y are never executed.

PROBLEM 4

a) The tasks T1, T2 and T3 should normally reside in three separate objects, but since their execution
is precedence-constrained a solution where they share one object (A) is also correct. Task BG
needs to reside in an object that is separate (object B) from the hard-real-time tasks.

void T1(TaskObj *self, int u) {

Action300(); // Do work for 300 microseconds

BEFORE(USEC(1200), self, T2, 0); // Keep current baseline

}

void T2(TaskObj *self, int u) {

Action800(); // Do work for 800 microseconds

BEFORE(USEC(2100), self, T3, 0); // Keep current baseline

}

void T3(TaskObj *self, int u) {

Action500(); // Do work for 500 microseconds

SEND(USEC(2400), USEC(1600), self, T1, 0);

}

void BG(TaskObj *self, int u) {

Load700(); // Do background work for 700 microseconds

SEND(USEC(1800), USEC(1800), self, BG, 0);

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(1600), &A, T1, 0);

BEFORE(USEC(1800), &B, BG, 0);

}

main() {

return TINYTIMBER(&A, kickoff, 0);

}

b) By simulating the execution of the tasks, assuming the EDF scheduler in TinyTimber, we can see
that task T3 will miss its deadline at t=2100 µs (having an additional 200 µs to execute).

Conclusion: It is not possible to guarantee that task T3 will meet its deadline.

PROBLEM 5

Since RM is used, the task priorities are determined by the task periods. To that end, with the original
task periods, task τ1 has highest priority (shortest period) and process τ3 has lowest priority.

a) Our first candidate method for schedulability analysis is Liu and Layland’s utilization-based test.
For three tasks, the guarantee bound for RM is URM(3) = 3(21/3 − 1) ≈ 0.780. Unfortunately, the
accumulated task utilization, Utotal = 2/5 + 4/13 + 6/29 ≈ 0.915, exceeds the guarantee bound,
and the test does not provide any useful information.

We therefore calculate the response time of each task and compare it against the corresponding
task deadline (= period):

R1 = C1 = 2 < T1 = 5.

R2 = C2 + ⌈R2

T1

⌉ · C1. Assume that R0
2 = C2 = 4:

R1
2 = 4 + ⌈ 4

5⌉ · 2 = 4 + 1 · 2 = 6

R2
2 = 4 + ⌈ 6

5⌉ · 2 = 4 + 2 · 2 = 8

R3
2 = 4 + ⌈ 8

5⌉ · 2 = 4 + 2 · 2 = 8 < T2 = 13

R3 = C3 + ⌈R3

T2

⌉ · C2 + ⌈R3

T1

⌉ · C1. Assume that R0
3 = C3 = 6:

R1
3 = 6 + ⌈ 6

13⌉ · 4 + ⌈ 6
5⌉ · 2 = 6 + 1 · 4 + 2 · 2 = 6 + 4 + 4 = 14

R2
3 = 6 + ⌈ 14

13⌉ · 4 + ⌈ 14
5 ⌉ · 2 = 6 + 2 · 4 + 3 · 2 = 6 + 8 + 6 = 20

R3
3 = 6 + ⌈ 20

13⌉ · 4 + ⌈ 20
5 ⌉ · 2 = 6 + 2 · 4 + 4 · 2 = 6 + 8 + 8 = 22

R4
3 = 6 + ⌈ 22

13⌉ · 4 + ⌈ 22
5 ⌉ · 2 = 6 + 2 · 4 + 5 · 2 = 24

R5
3 = 6 + ⌈ 24

13⌉ · 4 + ⌈ 24
5 ⌉ · 2 = 6 + 2 · 4 + 5 · 2 = 24 ≤ T3 = 29

Conclusion: all tasks meet their deadlines!

b) An obvious version of the task set that has more appropriate periods (within the given limits) is
where T2 = 15 and T3 = 30. Since the original task set is schedulable, and neither the new T2 nor
the new T3 is shorter than the original period, the new task set must also be schedulable. The
length of this (repeatable) schedule is 30 time units. If we generate the time table by simulating
an RM scheduler we get the following start and stop times for the tasks:

τ1: 6 instances: (0,2), (5,7), (10,12), (15,17), (20,22) and (25,27)

τ2: 2 instances: (2,5)(7,8) and (17,20)(22,23)

τ3: 1 instance: (8,10)(12,15)(23,24)

There is also a version of the task set with T2 = 10 and T3 = 30 that, despite a total task utilization
of 100%, is RM schedulable. The length of this (repeatable) schedule is also 30 time units, but has
one more instance of τ2 and thus less compact.

PROBLEM 6

We apply processor-demand analysis to determine the minimum value of D2. The hyper-period for the
given task set is LCM{10, 20, 40} = 40.

Since C2 = 2, we must have D2 ≥ 2. If D2 <= 5, then within L = 5 time units the first instances of
both tasks τ1 and τ2 must complete a total of (2+ 4) = 6 units of execution since their deadlines will be
within (0, 5]. However, completing 6 units of execution within [0, 5] is not possible. Therefore, we must
have D2 ≥ 6. We try with D2 = 6.

If D2 = 6, then the set of control points are K = {5, 6, 15, 25, 26, 35}.
Consider L = 5.

NL
1 · C1 = (⌊ 5−5

10 ⌋+ 1) · C1 = 4 NL
2 · C2 = (⌊ 5−6

20 ⌋+ 1) · C2 = 0

NL
3 · C3 = (⌊ 5−25

40 ⌋+ 1) · C3 = 0

CP (0, L) = CP (0, 5) = 4 + 0 + 0 = 4 ≤ L = 5.

Consider L = 6.

NL
1 · C1 = (⌊ 6−5

10 ⌋+ 1) · C1 = 4 NL
2 · C2 = (⌊ 6−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 6−25

40 ⌋+ 1) · C3 = 0

CP (0, L) = CP (0, 6) = 4 + 2 + 0 = 6 ≤ L = 6.

Consider L = 15.

NL
1 · C1 = (⌊ 15−5

10 ⌋+ 1) · C1 = 8 NL
2 · C2 = (⌊ 15−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 15−25

40 ⌋+ 1) · C3 = 0

CP (0, L) = CP (0, 15) = 8 + 2 + 0 = 10 ≤ L = 15.

Consider L = 25.

NL
1 · C1 = (⌊ 25−5

10 ⌋+ 1) · C1 = 12 NL
2 · C2 = (⌊ 25−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 25−25

40 ⌋+ 1) · C3 = 4

CP (0, L) = CP (0, 25) = 12 + 2 + 4 = 18 ≤ L = 25.

Consider L = 26.

NL
1 · C1 = (⌊ 26−5

10 ⌋+ 1) · C1 = 12 NL
2 · C2 = (⌊ 26−6

20 ⌋+ 1) · C2 = 4

NL
3 · C3 = (⌊ 26−25

40 ⌋+ 1) · C3 = 4

CP (0, L) = CP (0, 26) = 12 + 4 + 4 = 20 ≤ L = 26.

Consider L = 35.

NL
1 · C1 = (⌊ 35−5

10 ⌋+ 1) · C1 = 16 NL
2 · C2 = (⌊ 35−6

20 ⌋+ 1) · C2 = 4

NL
3 · C3 = (⌊ 35−25

40 ⌋+ 1) · C3 = 4

CP (0, L) = CP (0, 35) = 16 + 4 + 4 = 24 ≤ L = 35.

The minimum value of D2 is 6.

PROBLEM 7

a) See the lecture slides on multiprocessor scheduling.

b) See the lecture slides on multiprocessor scheduling.

c) The total utilization of the task set is U = U1 + U2 + . . . U7 + U8 = 2.0.

Ci Ti Ui

τ1 2 8 0.25
τ2 2 5 0.40
τ3 1 10 0.10
τ4 3 120 0.025
τ5 15 30 0.5
τ6 60 600 0.1
τ7 100 200 0.5
τ8 2 16 0.125

We find the minimum number of processors required based on the guarantee bound m2/(3m− 2)
for RM-US scheduling. Since U = 2.0, it is necessary that

m2/(3m− 2) ≥ 2.0

or, m2 − 6m+ 4 ≥ 0

in order to guarantee that all the tasks are schedulable using RM-US global scheduling. By solving

the quadratic equation m2 − 6m + 4 = 0, we have m = 6±
√
36−16
2 = 3 ±

√
5. Since the number

of processors m ≥ 1, we have m ≥ 3 +
√
5 = 5.23. Since the number of processors m must be an

integer, we need at least 6 processors.

d) We denote τa ≻ τb to say that task τa has higher priority than τb.

The threshold utilization for RM-US global scheduling (for m = 6) is

m/(3m− 2) = 6/16 = 0.375

Since each of the tasks τ1, τ3, τ4, τ6 and τ8 has utilization smaller than the threshold utilization
0.375, these five tasks will get lower priority than the remaining three tasks. The relative priority
ordering of these five (lower-priority) tasks is governed by the RM priority. Therefore, τ1 ≻ τ3 ≻
τ8 ≻ τ4 ≻ τ6 because T1 < T3 < T8 < T4 < T6.

Since each of the other three tasks τ2, τ5 and τ7 has utilization larger than the threshold utilization
0.375, these three tasks will get the highest priority and their relative priority ordering is arbitrary.
Examples of such arbitrary ordering is τ5 ≻ τ2 ≻ τ7, or τ2 ≻ τ5 ≻ τ7 or, τ7 ≻ τ5 ≻ τ2 (there are six
such arbitrary orderings, since 3! = 6).

Therefore, three possible priority ordering of all the tasks are

τ5 ≻ τ2 ≻ τ7 ≻ τ1 ≻ τ3 ≻ τ8 ≻ τ4 ≻ τ6

or,

τ2 ≻ τ5 ≻ τ7 ≻ τ1 ≻ τ3 ≻ τ8 ≻ τ4 ≻ τ6

or,

τ7 ≻ τ5 ≻ τ2 ≻ τ1 ≻ τ3 ≻ τ8 ≻ τ4 ≻ τ6

