Exam QM (IEK312) – 29th October 2016

Errata

In the multiple-choice question Q7 (DoE) where it is written:

 $\left|l_{C}\right| > \left|l_{BC}\right|$ and $\left|l_{C}\right| > 0$; $\left|l_{BC}\right| < 0$

It should be:

 $|l_C| > |l_{BC}|$ and $l_C > 0$; $l_{BC} < 0$

EXAMINATION

Quality Management

IEK312

Examiner:	Marco Santos, 070 403 94 38
For questions:	Marco Santos will visit the exam place one hour after the beginning and one hour before the end of the examination.
Aids at the exam:	Non-programmable calculator, dictionary
Grading scale:	Grade 3: 20p-29p / Grade 4: 30p-39p / Grade 5: 40p-50p (Max 50p)
Results:	The students will receive an email within three weeks after the exam.
Grading review:	23 rd November 2016, 11:00-12:30 at Marco Santos' office at the Division of Service Management and Logistics (floor 3, building opposite to Vasa C)

OBSERVE

New answer sheetStart each question with a new answer sheet. Write the question number and yourfor each question:code on top of each page.

Relevance: Irrelevant answers can give reduced amount of points.

Handwriting: Write legibly! Illegible answers will be disregarded.

EXAM STRUCTURE

The exam consists of parts 1 and 2, corresponding to 30 and 20 points, respectively. Part 1 consists of six five-point questions. Part 2 deals only with DoE and SPC and includes 20 multiple-choice questions. The exam is to be completed in four hours. The highest grade of the mid-term and part 2 will be used in the calculation of the final grade. The bonus points collected during the course will be added to the number of points in the exam.

PART 1 (30p)

Q1	 a) Discuss the <u>relations</u> between the different values (also referred to as principles or cornerstones) within Quality Management. Discuss the relations within 5 pairs of values. Max 1 page 	5р
Q2	 a) What characterizes a process? b) Discuss how flowcharting can be used to streamline and improve processes. c) Provide a flowchart consisting of at least 8 activities/steps and two roles for the process: "To take a university course" Max 1 page 	5 P
Q3	 a) Describe the purpose of the EFQM Excellence Model b) Explain six of EFQM Excellence Model criteria c) Compare the values on which the EFQM Excellence Model is based to the values in the Cornerstone Model. Max 1 page 	5 ₽
Q4	 a) Describe each phase of the PDCA-cycle briefly b) Use the PDCA-cycle to analyze your work to prepare for this exam. What were the strengths and weaknesses of your own work in a PDCA-perspective? Max 1 page 	5p
Q5	 a) Describe the Kano Model and its dynamics. b) Choose a product or a service, ex. mobile telephone or restaurant visit, and apply the Kano Model to the selected product or service. Max 1 page 	5p
Q6	 a) Explain the concept of robustness and the reason of its importance Answer only one of the sub-questions below: b) Explain the pendulum example in the context of robustness c) Assume that the equation below was obtained from an experiment. The equation allows estimating how an important quality characteristic <i>y</i> is affected by the control factors A, B and C and the noise factor z. How can you use the equation below to get a robust product? Equation: <i>y</i>= 17 + 3A + 4B + 13C - 3z + 3 Az Max 1 page 	5₽

PART 2 (20p)

Instructions for answering the multiple-choice questions

At the end of the exam, you will find the formulas necessary for you to answer the SPC and DoE questions. Please note that you don't need to hand-in this sheet. You should answer the SPC and DoE questions on the sheet with the questions, i.e. "Answer sheet: SPC" and "Answer sheet: DoE". Answers to SPC and DoE questions given elsewhere than on the designated answer sheets will not be considered.

On each answer sheet you will find 10 multiple-choice questions. Please note that more several alternatives may be partially correct. Your task is to select the most correct alternative in each question.

Each correct answer is awarded with 1p whereas **incorrect answers are punished with reduction of 0.33p**. You can receive a maximum of 10p and a minimum of 0p per answer sheet.

Different templates have been created for the entire class by changing the order of questions and/or alternatives. Please note that cheating is not allowed!

You should mark only one alternative per question. Mark your answer with "X" in the square next to your answer. A shaded square is equivalent to leaving it blank. If you write more than one "X" per question, your answer will be considered invalid. Invalid answers will receive Op. Below follows examples of valid and invalid answers. If you want to mark a certain alternative that you have previously shaded, write a comment in the designated field at the end of the answer sheet.

abc	abc	abc	X abc
abc	X abc	abc	abc
abc	abc	abc	abc
X abc	X abc	abc	abc
Valid answer	Invalid answer	Invalid answer	Valid answer

Some formulas for answering the SPC questions

			Φ(z) when N(0,1)
Estimate of process variance	$\hat{\sigma}_x = \frac{\overline{R}}{d_2}$	$\hat{\sigma}_x = \frac{\overline{s}}{c_4}$	Z	Φ(z)
	d_2	c_4	3,0	0,9986501019684
			3,5	0,9997673709210
	$\sim IISI - ISI$	$\hat{U}SI = \hat{\mu} \hat{\mu} = ISI$	4,0	0,9999683287582
Capability Indices:	$\hat{C}_p = \frac{OSL - LSL}{6\hat{a}}$	$\hat{C}_{pk} = \min(\frac{USL - \hat{\mu}_x}{3\hat{\sigma}_y}, \frac{\hat{\mu}_x - LSL}{3\hat{\sigma}_y})$	4,5	0,9999966023269
	OO_x	50_x 50_x	5,0	0,9999997133484
			5,5	0,9999999810104
	<i>a</i>		6,0	0,99999999990134
Xbar-chart:	$\mu_x \pm 3 \frac{\sigma_x}{\sqrt{n}}$		6,5	0,99999999999598
	\sqrt{n}		7,0	0,99999999999987
	n(1 m)		Sta	indardization of
p-chart:	$p \pm 3 \int \frac{p(1-p)}{p}$		n	ormal random
	v n			variables
				
				$Z = \frac{x - \mu}{\sigma}$
c-chart:	$c \pm 3\sqrt{c}$			σ

CHALMERS	Anonymous code	Points for question (to be filled in by teacher	.)	Consecutive page Löpande sid nr	no.
	Anonym kod	Poäng på uppgiften	,	Question no.	
		(fylles av lärare)		Uppgift nr	
			CDC		Max: 10p
Template A	ŀ	Answer Sheet	SPC		Min: 0p
Q1 A process that	t is <u>not</u> stable is characte	erized by:			
	cess mean over time				
	cess mean and variance				
	n assignable causes of va edict the process' future		not forget to fill in th	e exam code on t	his sheet!
		retical distribution of the indivision of the in	•	99.00	ЛВ
		A and B assuming that the to		95.00	/
same for bot	h processes?			0.00 70.00 60.00 50.00	
	is similar for A and B			40.00 30.00 20.00	
	is similar for A and B	D		10.00 5.00 3.00 2.00	
	nean is similar for A and tion non-conforming) is			1.00 0.50 0.20 0.10	www.Weibull.com
chart should		er of falls among elders is to l n elder can fall more than ond			
04 Which of the	following X-bar charts is	s most likely to		B	
depict a stabl	-		$\sim \sim \sim$		
A Control chart	Α				
B Control chart	В	G			
C Control chart		F	<u></u>		
Control chart	D				
Q5 If you want t limits?	he false alarm rate to be	e 1 in 1000, i.e. 0,1%, what is	the number of sigma	s to be used for	the control
A 6 - sigma lir					
B 3.3 - sigma lir					
3 - sigma lir					
2.5 - sigma lir	IIIIIS				

Hand-in this sheet!

Q6	In a semiconductor company, statistical process control is being used to monitor the thickness of the metal used in
	gold plating. The process has been stable with a process mean of 985 μ m and a standard deviation of 5 μ m (standard
	deviation of the individual units). Customer specifications are $1000\pm30 \ \mu$ m. What is the percentage of defective units
	in this case?

A It is necessary to know the number of sigmas used for the calculation of the limits of the control chart used

B It is necessary to know the sample size used for plotting the control chart to be able to answer the question

C 3,4 dpmo (defects per million opportunities)

- D 0,13%
- **Q7** Assume that an Xbar-chart is being used to monitor a quality characteristic. By increasing the sample size you can expect:

A an increase in the fraction non-conforming

B an increase in the false alarm rate

C an increase in the power of the control chart

D an increase in the ARL1

Q8 Consider the case of taking samples of shafts regularly from a process with the purpose of monitoring their length by means of a control chart. When deciding on whether to use ranges (R) or standard deviations (s) you should keep in mind that:

A R cannot be used as a measure of dispersion (or spread)

B R provides a less precision estimation of dispersion (or spread) than the s

C As sample size increases, the use of R becomes more preferrable to the use of s

D By-hand calculation of R tends to be more time-consuming that of s

Q9	Consider the case of ten psychologists who diagnose patients (from #1 to #10). The		n	n_def	p_def
	diagnosis can be either "correct" or "incorrect". The adjoining table show the annual	#1	100	5	5,0%
	number of diagnosed patients per psychologist (n), the number of incorrect diagnoses	#6	100	15	15,0%
	(n_def) and the percentage of incorrect diagnoses (p_def). Assume that patient	#8	100	11	11,0%
	diagnoses are independent of each other and the the psychologists' risk of incorrect	#4	200	22	11,0%
	diagnosis is constant. By using a control chart with <u>2-sigma</u> limits, it is possible to	#9	200	18	9,0%
	conclude that:	#10	200	24	12,0%
	Only neychologist #2 should be considered a good performer	#5	200	18	9,0%
A	Only psychologist #2 should be considered a good performer	#2	300	18	6,0%
В	Psychologists #1 and #2 should be considered good performers	#3	300	36	12,0%
С	There is at least one psychologist who should be considered a poor performer	#7	300	33	11,0%
D	The differences in p_def are only due to randomness	Sum	2000	200	

Q10 The staff in a hospital is monitoring the cycle time of blood tests by means of an X-MR chart with 3-sigma control limits. The adjoining table shows the cycle time of ten consecutive blood tests in hours (from #1 to #10). The average cycle time of the ten blood tests shown in the table is 67,0 hours. What can you say about the stability of the process by examining only the X-chart?

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
44	71	91	54	67	61	83	23	68	108

A The process seems to be stable as there are no points outside the control limits

B The process may not be stable as there is at least one point below the LCL and none above the UCL

The process may not be stable as there is at least one point above the UCL and none below the LCL

The process may not be stable as there is at least one point below the LCL and at least one above the UCL

CHAL	MERS	Anonymous code	Points for question (to be filled in by teacher)	Consecutive page no. Löpande sid nr
		Anonym kod	Poäng på uppgiften	Question no.
			(fylles av lärare)	Uppgift nr
	Template A		ANSWER SHEET DOE	Max: 10p - Min: 0p
	The instruct	ions for answering the D	DoE questions are similar to those for a	inswering the SPC questions.
Q1		ffects? Assume that no i	the maximum number of two-level mai replications are to be taken.	n factors that can be studied without
A B C	4 main factors 15 main factor	;		
D	16 main facto	rs	Note: Do not forget	to fill in the exam code on this sheet!
Q2 A B C D	To reduce the To reduce the To spread the	cost of the experiment noise in the experiment effect of the noise more	domization in design of experiment? e evenly throughout the experiment nt assuming it is constant throught the	experiment
Q3	were collecte	d. What is the number o constant for all runs (or reedom reedom freedom	tion to the right) was conducted and f degrees of freedom in this case? Assi treatments).	34-1
Q4 A B C D	Confounding of The effect of s The effect of s	does not occur in this exp ome main factors is con ome main factors is con	Q3. What can you conclude about the periment founded with the effect of other main founded with the effect of two-factor in ions is confounded with the effect of or	actors
Q5 A B C D	blade lengt an The design us The average f How much is t 1,6 3,1 6,2	d diaphgram width on th ed was a full factorial de lying time for each run is he estimated effect of b	-	6.70 8.90 1 1 1 1 1 1 1 1 1 1 1 1 1

Hand-in this sheet!

More questions on the other side!

Q6 A B C D	Continuation of the case presented in Q5. The interaction plot of all two-factor interactions are shown in the attached picture. Which interaction PaperDensity factors has the largest effect? Paper density x Blade length Paper density x Diaphragm width Blade length x Diaphgram width Provided information is insufficient	Bla	1 		1 NaphragmW	1 9 8 7 6 5 10 8 7 6 5 10 9 8 8 7 7 6 5 10 9 9 8 8 7 7 6 5 10 9 9 8 8 7 7 9 9 8 8 7 7 9 9 8 8 7 7 9 9 8 8 7 7 9 9 8 8 7 7 9 9 8 8 7 7 9 8 8 8 9 9 9 8 8 9 9 9 8 8 9 9 8 8 9 9 8 8 9 9 9 8 8 9 9 8 9 9 8 8 9 9 8 9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 9 8 9 9 9 9 8 9		er Density -1 1 er Density -1 1 deLength -1 1
Q7 A B C D	In an experiment the two-level main factors A, B and C were More information about the magnitude of the effects is prov- order to <u>maximise</u> the outcome? $ l_c > l_{BC} \text{ and } l_c > 0 \text{ ; } l_{BC} < 0$ A+, B+ and C+ C+, levels of A and B do not matter for the outcome under stude B-, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and level of A does not matter for the outcome under stude B+, C+ and B+, C+, C+, C+, C+, C+, C+, C+, C+, C+, C	ided bo dy udy	-					
	the description of the second s				.			
Q8 A B C D	Under which circumstances should one-factor-at-a-time be use When you don't expect to find active interactions When you want to save resources When you want to estimate the effects of experimental factors Under no circumstances			-	t experi	ments?		
Q9	Suppose that a full factorial design with four two-level main fa were taken. The estimated effects of the three-factor and fou of these five effects is 0,8. Calculate a 95%-confidence inte distribution. $l_{ABC} = 7; l_{ABC}$	r-facto rval of	r interact f the nor	ions a i-activ	are show e facto	wn belov rs effec	w. The av ts using	verage the t-
A B C D	0 ± 20,6 0 ± 24,9 0,8 ± 17,6 0,8 ± 23,1							
Q10	A DoE study of how the two-level main factors X1 and X2 affer table. For each run the average outcome and sample varions observations was 100,3 and the pooled variance 10,1. In this s the pooled variance. Calculate a 95%-confidence interval of the	ance a pecific	are show case the	n as variar	well. T nce of th	he aver ne effect	age of a ts is equa	all ten I 5/12
		X1	X2	Y1	Y2	Y3	Ybar	s2
Α	0 ± 4,0	Low	Low	102	98	103	101,0	7,0
В	0 ± 5,0	High	Low	92	97	90	93,0	13,0
С	0 ± 10,3	Low	High	102	106		104,0	8,0
D	100,3 ± 10,3	High	High	1 04	109		106,5	12,5

Hand-in this sheet!

Appendix Tables and formulas

								/	\mathcal{A}	
								/		
								/		
								/	-z->	
Tabl	le A. Ta	il Area	of Unit I	Normal	Distribut	tion	/			1
							0.06	0.07	0.00	0.00
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.098
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0908	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.068
1.4	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.055
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.045
	0.0348	0.0436	0.0320	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.036
1.7	0.0359	0.0450	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.029
1.8	0.0339	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.023
1.9			0.0217	0.0212	0.0202	0.0202	0.0197	0.0192	0.0188	0.018
2.0	0.0228	0.0222	0.0217	0.0212	0.0162	0.0158	0.0154	0.0150	0.0146	0.014
2.1	0.0179	0.0174	0.0170	0.0129	0.0102	0.0122	0.0119	0.0116	0.0113	0.0110
2.2	0.0139	0.0136 0.0104	0.0132	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.008
2.3	0.0107		0.0102	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.006
2.4	0.0082	0.0080	0.0059	0.0075	0.0055	0.0054	0.0052	0.0051	0.0049	0.004
2.5	0.0062	0.0060		0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	
2.6	0.0047	0.0045	0.0044 0.0033	0.0043	0.0031	0.0030	0.0029	0.0028	0.0027	0.002
2.7	0.0035	0.0034	0.0033	0.0032	0.0023	0.0022	0.0021	0.0021	0.0020	0.001
2.8	0.0026	0.0025			0.0016	0.0016	0.0015	0.0015	0.0014	0.001
2.9	0.0019	0.0018	0.0018	0.0017	0.0012	0.0011	0.0011	0.0011	0.0010	0.001
3.0	0.0013	0.0013	0.0013		0.00012	0.0008	0.0008	0.0008	0.0007	0.000
3.1	0.0010	0.0009	0.0009	0.0009	0.0006	0.0006	0.0006	0.0005	0.0005	0.000
3.2	0.0007	0.0007	0.0006				0.0004	0.0004	0.0004	0.000
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0003	0.0003	0.000
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003		0.0003	0.0003	0.000
3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002		0.0002	0.000
3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		
3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000
3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000
3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000

Table B1. Probability Points of the t Distribution with v Degrees of Freedom

		Tail Area Probability											
ν	0.4	0.25	0.1	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005			
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62			
2	0.289	0.816	1.886	2.920	4,303	6.965	9.925	14.089	22.326	31.598			
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924			
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610			
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869			
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959			
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408			
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.04)			
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781			
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587			
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.43			
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318			
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.22			
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.14(
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073			
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.013			
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.963			
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922			
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883			
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.85			
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.81			
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.79			
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.76			
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.74			
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.72			
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.70			
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.69			
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.67			
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.65			
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.64			
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.55			
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.46			
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.37			
00	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.29			

n	d_2	d_3	C_4
2	1.128	0.8525	0.7979
3	1.693	0.8884	0.8862
4	2.059	0.8798	0.9213
5	2.326	0.8798	0.9400
6	2.534	0.8480	0.9515
7	2.704	0.8332	0.9594
8	2.847	0.8198	0.9650
9	2.970	0.8078	0.9693
10	3.078	0.7971	0.9727
11	3.173	0.7873	0.9754
12	3.258	0.7785	0.9776
13	3.336	0.7704	0.9794
14	3.407	0.7630	0.9810
15	3.472	0.7562	0.9823
16	3.532	0.7499	0.9835
17	3.588	0.7441	0.9845
18	3.640	0.7386	0.9854
19	3.689	0.7335	0.9862
20	3.735	0.7287	0.9869
21	3.778	0.7272	0.9876
22	3.819	0.7199	0.9882
23	3.858	0.1759	0.9887
24	3.895	0.7121	0.9892
25	3.931	0.7084	0.9896

(Control charts constants)

Probability mass function for the Poisson distribution:

$$f(k; \lambda) = \Pr(X = k) = \frac{\lambda^{\kappa} e^{-\lambda}}{k!}$$

Probability mass function for the Binomial distribution:

$$f(k;n,p) = \Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

3-sigma control limits for the c-chart: $ar{c}\pm 3\sqrt{ar{c}}$

3-sigma control limits for the p-chart:
$$ar{p}\pm 3\sqrt{rac{ar{p}(1-ar{p})}{n}}$$

3-sigma control limits for the Xbar-chart:

$$\mu \pm 3 \frac{\sigma}{\sqrt{n}} ; \bar{X} \pm 3 \frac{R}{d_2\sqrt{n}} ; \bar{X} \pm 3 \frac{\bar{x}}{c_4\sqrt{n}}$$

$$3-\text{sigma control limits for the X-chart:} \mu \pm 3\sigma ; \bar{X} \pm 3 \frac{\overline{MR}}{d_2}$$

3-sigma control limits for the R-chart (also applicable for MR-chart):

$$d_2\sigma \pm 3d_3\sigma$$

3-sigma control limits for the s-chart:
$$c_4\sigma\pm 3\sqrt{1-c_4^2\sigma}$$

Variance of the effects can be estimated as: $\sigma_{effect}^2 = rac{4s_{pooled}^2}{r \cdot n} = rac{4\overline{s^2}}{r \cdot n}$

where r is the number of runs and n is the number of replications. The formula given applies when the number of replications is the same for each run, besides the assumptions of independence and homoscedasticity.

Appendix 2: Normal Probability Paper