
Chalmers University of Technology, Department of Mechanics and Maritime Sciences
Teacher: Mattias Wahde, tel. 772 3727

Exam in FFR 105 (Stochastic optimization algorithms), 2018-10-31,
14.00-18.00, M.

The examiner will visit the exam rooms twice, around 15.00 and around 17.00. It will be
possible to review your results (exam and home problems) after Nov. 13.

In the exam, it is allowed to use a calculator, as long as it cannot store any text. Fur-
thermore, mathematical tables (such as Beta, Standard Math etc.) are allowed, provided
that no notes have been added. However, it is not allowed to use the course book, or any
lecture notes from the course, during the exam.

Note! In problems involving computation, show clearly how you arrived at your answer,
i.e. include intermediate steps etc. Only giving the answer will result in zero points on the
problem in question. There are four problems in the exam, and the maximum number of
points is 25.

1. (a) Particle swarm optimization (PSO) is a stochastic optimization based on swarm-
ing in biological systems, and somewhat similar to genetic algorithms.

i. Swarming is a frequent phenomenon in nature. Describe at least two rea-
sons why this phenomenon occurs. (1p)

ii. Write down the equation for the velocity update in the standard PSO
algorithm, and explain all parts of the equation in detail. Pay particular
attention to the variable indices (where applicable). In the equation for
the velocity update, one parameter is responsible for handling the trade-
off between exploration and exploitation. Your description should include
a clear explanation (with equations and parameter values) of how this
trade-off is handled in PSO. (4p)

(b) In optimization, convexity of the objective function is a desirable property.
Determine whether or not the function

f(x1, x2) = 4x2
1 + 2x2

2 − 2x1x2 (1)

is convex. (1p)

(c) Tournament selection is a common selection operator in evolutionary algo-
rithms (EAs). Consider a case with a population size of five where, in a given
generation, the fitness values are F1 = 3, F2 = 6, F3 = 7, F4 = 9 and F5 = 15.
Assuming a tournament size of two, what is the probability of selecting indi-
vidual 4 (in a single selection step), assuming that the tournament selection
parameter ptour is equal to 0.8. Show clearly how you arrive at your answer.
(2p)



2. (a) Newton-Raphson’s method is an iterative method for finding local optima of
a twice differentiable function. Use this method to find the minimum of the
function f(x) = 1 + x6 − x2, starting from x ≡ x0 = 1. First, write down
(for this particular function) the expression for xj+1 as a function of xj . Then
iterate until the difference between two consecutive iterates (i.e. |xj+1 − xj |)
drops below 10−5. Next, make a table with three columns: (1) the index j+1 of
the iterate, (2) the corresponding value xj+1 and (3) the difference |xj+1 − xj |,
and insert the values obtained for j = 0, 1, 2, . . . Finally, prove that the point
found is really a minimum of f(x). (3p)

(b) The Lagrange multiplier method is applicable to optimization problems involv-
ing equality constraints. Using this method, find the minimum and maximum
values of the function

f(x1, x2) = 3x1x2 + 2 (2)

subject to the constraint
x2
1 + x2

2 = 1. (3)

In your answer, in addition to giving the minimum and maximum values, pro-
vide also the corresponding values of (x1, x2) for all points where the function
takes either the minimum or the maximum value. (4p)

3. In analytical studies of genetic algorithms (GAs), it is common to use the Onemax
problem, for which the value of the fitness function for a given (binary) chromosome
equals the number of 1s in the chromosome. For this simple problem, one can derive
an expression for the runtime and the optimal mutation rate for a GA with a single
individual, which is modified using mutations only. In this GA, a mutated individual
is kept if and only if it is better (i.e. its chromosome contains more 1s) than the
previous individual.

(a) Consider a chromosome of length m with l 0s (and, therefore, m−l 1s). Let the
mutation rate be pmut. Derive an approximate expression for the probability of
improving this chromosome (i.e. increasing the number of 1s). The expression
should summarize a case in which none of the 1s mutate, and at least one of
the 0s does. (1p)

(b) Setting the mutation rate pmut to k/m, where m is the chromosome length,
and k ≪ m is a positive integer, derive an estimate for the runtime of this GA,
i.e. the number of iterations required to reach the global optimum. Motivate
clearly any approximations made in the derivation. (4p)
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4. Ant colony optimization (ACO) can be used in vehicle routing problems. Consider
the road network shown in the figure above. The network, which is not fully con-
nected, consists of eight nodes and a number of directed edges. For simplicity, the
edges are one-way in this problem. Thus, for example, there is an edge eB←A from
node A to node B, but no edge eA←B from node B to node A etc. The numbers given
on the edges are the measured traversal times (in some suitable time unit) between
the two nodes connected by the edge in question. The traversal time depends both
on the distance (not shown) between the two points and the amount of traffic.

In this problem it is assumed that all vehicles start at node A and should move
to node H, using probabilistic path generation as in the standard Ant system (AS)
algorithm. Thus, it is possible for a vehicle to select a nominally slower route,
perhaps to explore whether the traffic situation might have changed. (The traversal
times are based on estimates from preceding days).

In this case, the visibility of an edge is equal to the inverse of the traversal time for
that edge. The objective function is taken as the inverse of the total traversal time
as a vehicle moves from its start node to its end node. It is assumed that pheromone
updates take place as soon as any vehicle reaches its end node.

The parameters are as follows, using standard AS notation: α = 1, β = 2, and
ρ = 0.5, and the initial pheromone levels are set to τ0 = 0.1 for all edges.

(a) What is the probability that the first vehicle will follow the fastest path from
node A to node H (assuming that the estimated travel times are accurate for
all edges)? (2p)

(b) Assuming that the first vehicle actually does follow the fastest path, compute
the updated pheromone levels on all edges (using the standard AS method for
updating pheromones). (1p)

(c) Assuming that the traversal times have not changed, what is the probability
that the next vehicle will follow the fastest path from node A to node H, taking
into account the changed pheromone levels resulting from the traversal of the
first vehicle? (2p)


