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Exam in FFR 105 (Stochastic optimization algorithms), 2008-10-22,
14.00-18.00, V.
It is allowed to use a calculator, as long as it cannot store any text. Furthermore, math-
ematical tables (such as Beta, Standard Math etc.) are allowed, provided that no notes
have been added. However, it is not allowed to use the course book during the exam.
Note! In all problems involving analytical calculations, derivations, proofs etc., show
clearly how you arrived at your answer, i.e. include intermediate steps etc.

There are 4 problems in the exam, and the maximum number of points is 25.

1. (a) Many operators and concepts (and different versions thereof) have been defined
in connection with evolutionary algorithms (EAs). Describe, in detail, the
following concepts:

i. Elitism (1p)

ii. Fitness ranking (1p)

iii. Creep mutations (real-number creep) (1p)

You should not write Matlab code, but make sure to describe the three concepts
in such a way that it would be possible to write Matlab code, based on your
description.

(b) Roulette-wheel and tournament selection are commonly used methods for se-
lection in EAs. Consider a case where a single individual is to be selected from
a population in which the fitness values are F1 = 1, F2 = 4, F3 = 9, F4 = 16,
F5 = 25, using either (i) roulette-wheel selection or (ii) tournament selec-
tion with a tournament size of two, and with tournament selection probability
ptour = 0.75. What is the probability of selecting individual 4 (with fitness
= 16) using

i. Roulette-wheel selection (1p)

ii. Tournament selection (1p)

(c) Convexity (of the objective function) is a desirable property in optimization
problems. Formally, if S ∈ Rn is a convex set and f(x) is a convex function
defined on S, then any local minimum is also a global minimum. Prove this
result, using the properties of convex functions. Note: Make sure to use clear
statements and formulations, such that the proof can be followed, in detail,
from the first step to the last. (2p)

(d) Is the function
f(x1, x2) = 4x2
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2
− 3x1x2 (1)

convex or not? Motivate your answer clearly! (1p)

(e) In stochastic optimization algorithms, such as EAs, ant colony optimization
(ACO) and particle swarm optimization (PSO), there is always a tradeoff be-
tween exploration and exploitation of the results already found. Describe, in
detail, how this tradeoff is managed in the case of PSO. In your description,
include any equations that may be useful. (2p)



2. Determine (analytically, using one or several of the classical optimization methods
covered in the course) the minimum value taken by the function

f(x1, x2) = 2x2
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over the set
S = {(x1, x2) : 2x2
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≤ 12}. (3)

Make sure to describe all steps in the calculation clearly. (4p)

3. Ant colony optimization (ACO), which is inspired by the behavior of ants, is typ-
ically used for solving routing problems, such as the traveling salesman problem
(TSP). Several ACO algorithms have been defined.

(a) Describe the algorithm Ant system (AS) in detail. Make sure to provide a clear
list of the various steps in the algorithms, as well as a brief explanation of each
step. You should not write Matlab code, but your presentation of the algorithm
should be sufficiently clear to make an implementation possible, based on your
description. You may use the TSP as a specific example in the description.
(3p)

(b) Max-min ant system (MMAS) is another version of ACO, derived from AS.
List and describe clearly the differences between MMAS and AS. (2p)

(c) In MMAS explicit lower and upper bounds are introduced on the pheromone
levels. However, the explicit upper bound is, in fact, unnecessary. Prove rigor-
ously (for MMAS) that the maximum pheromone level on any edge eij cannot
exceed f ∗/ρ, where f ∗ is the value of the objective function for the optimal
solution (i.e. 1/D∗ in the case of TSP, where D∗ is the length of the shortest
possible path) and ρ ∈]0, 1] is the evaporation rate. (2p)

4. In analytical studies of EAs, it is common to use the Onemax problem, for which
the value of the fitness function for a given (binary) chromosome equals the number
of 1s in the chromosome. For this simple problem, one can derive an expression for
the expected runtime (number of evaluations) for an EA with a single individual,
which is modified using mutations only. In this EA, a mutated individual is kept
if and only if it is better (i.e. its chromosome contains more 1s) than the previous
individual.

(a) Consider a chromosome of length m with l 0s (and, therefore m− l 1s). Let the
mutation rate be pmut. Derive an approximate expression for the probability of
improving this chromosome (i.e. increasing the number of 1s). The expression
should summarize a case in which none of the 1s mutate, and at least one of
the 0s does. (1p)

(b) Using the probability estimate derived in (a), derive an expression for the
expected number of evaluations needed to reach a chromosome consisting only
of 1s, starting from a chromosome with m

2
0s. Let the mutation rate be equal

to k/m, for some value of k � m. (3p)


