
MOS ESS101
December 2017 (re-exam)

This exam contains 9 pages (including this cover page) and 5 problems.

You are allowed to use the following books:

• �-handbook

• “Formeln+Hilfen Höhere Mathematik”

• “Physics handbook for science and engineering”

and a calculator. Some formula specific to this course are provided in the end as an appendix

• Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

• Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

• None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

• The passing grade will a priori be given at 28 points,
and the top grade at 42 points. These limits may be
lowered depending on the outcome of the exam.

Best of luck to all !!

Problem Points Score

1 9

2 10

3 14

4 4

5 13

Total: 50
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1. Lagrange modelling Consider a mass “1” (of mass m) moving on a sphere of equation '(p) =
1
2

�

p>p�R2
�

= 0 and a mass “2” (also of mass m) connected to the mass “1” with a rigid, mass-
less link of length L. The problem is illustrated in Fig. 1

(a) (4 points) Write down the model equations of this system in the form of a semi-explicit index-3
DAE.

Note: try to keep your notations compact. You do not need to provide @C
@q explicitly (where q will

be your set of generalised coordinates), but you need to detail the model enough that one would
understand how to code it symbolically in the computer (i.e. using basic operations like Jacobians
and matrix-vector multiplications)

(b) (3 points) Propose an equivalent model in the form of a fully-implicit index-1 DAE. Specify its
consistency conditions.

(c) (2 points) After running a simulation of the index-1 DAE equations, we observe the behavior de-
picted in Fig. 2. This can arguably be caused by two problems. Explain both.

Figure 1: Illustration of the system. The sur-
face ' is depicted as the see-through grey sur-
face. The trajectory of the mass m1 is depicted
as a black trace on the surface '.

Figure 2: Simulation of the system over 10 s. The
trajectory of the mass m1 depicted as a black
trace leaves the surface '. We want to under-
stand what can cause this.

Solution:

(a) Let us describe the system via the generalized coordinates (z-axis up):

q =



p1

p2

�

2 R6 (1)
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specifying the position of each ball. The chain then has the kinetic and potential energy:

T =
1

2
m

2
X

i=1

ṗ>
i ṗi =

1

2
mq̇>q̇, V = mga>q (2)

where a> =
⇥

0 0 m 0 0 m . . .
⇤

. We have the constraint functions

C(q) =

"

' (p1)
1
2

⇣

kp2 � p1k2 � L2
⌘

#

(3)

The Lagrange function then reads as:

L (q̇,q, z) =
1

2
mq̇>q̇�mga>q� z>C(q) (4)

The Lagrange equation then provides the dynamics, using:

@L
@q̇

= mq̇,
d

dt

@L
@q̇

= mq̈,
@L
@q

= �mga� z>
@C

@q
(5)

Hence we have the index-3 DAE model:

q̇ = v (6a)

v̇ = �ga� 1

m

@C

@q

>
z (6b)

0 = C (q) (6c)

This result could also be obtained directly from (62) by observing that W (q) = I. We can
additionally further explicitly provide (though this is not required from the question):

@C

@q

>
=



p1 p1 � p2

0 p2 � p1

�

(7)

(b) The index-reduced model is obtained by performing 2 time di↵erentiations of C = 0. They
provide:

Ċ =



p>
1 ṗ1

(p2 � p1)
> (ṗ2 � ṗ1)

�

= 0 (8a)

C̈ =



p>
1 p̈1

(p2 � p1)
> (p̈2 � p̈1)

�

| {z }

= @C

@q

q̈

+



ṗ>
1 ṗ1

(ṗ2 � ṗ1)
> (ṗ2 � ṗ1)

�

= 0 (8b)

We can then assemble the semi-explicit index-1 DAE model e.g.



q̇
v̇

�

=

"

v

�ga� 1
m

@C
@q

>
z

#

(9a)

0 = C̈ (9b)
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or in a complete, matrix form:

q̇ = v (10a)
"

mI @C
@q

@C
@q

>
0

#



v̇
z

�

= �
2

4

mga
ṗ>
1 ṗ1

(ṗ2 � ṗ1)
> (ṗ2 � ṗ1)

3

5 (10b)

For simulation purposes, one would typically introduce p1,p2, ṗ1, ṗ2, z in the state-space. The
consistency conditions require:

C (q)|t=0 = 0, Ċ (q, q̇)
�

�

�

t=0
= 0 (11)

(c) This could be example of constraints drift. Because the index-reduced model imposes C̈ = 0
instead of C = 0, numerical noise tends to accumulate as C̈ cannot be imposed at perfect
accuracy. This numerical noise is integrated twice by the integrator and yields a drift of the
constraint. However, the constraint drifts typically occurs over a long simulation time, while
this is a simulation over only 10 s. In this Fig., another problem is at play. The initial conditions
provided to the simulations are not satisfying the consistency conditions (??). As a result, the
constraints C follow the first-order dynamics:

C (q(t)) = C (q(0)) + tĊ (q(0), q̇(0)) (12)

We can observe from the trajectory that probably C (q(0)) = 0 held, as mass 1 seems to be on
the surface ', but Ċ (q(0), q̇(0)) 6= 0, resulting in mass 1 leaving the surface.
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2. System Identification

(a) (3 points) Consider the ARX model:

yk + a1yk�1 = b0uk + ek (13)

and the associated data y0,...,N and u0,...,N obtained from applying the input sequence u0,...,N to
the real system, started with yk<0 = 0.

Write the problem delivering the maximum-likelihood estimator of ✓ =
⇥

a1 b0
⇤>

according to
the one-step ahead prediction when the additive noise ek is uncorrelated and uniformly distributed
in the interval [�1, 1], i.e. the probability density function of ek is:

f(ek) =

⇢

0.5 if ek 2 [�1, 1]
0 if ek /2 [�1, 1] (14)

Describe the solution to the max-likelihood problem, in particular, is the solution unique?

(b) (2 points) Provide the one-step ahead prediction of (13) when the additive error ek is normal
centered and uncorrelated (white noise). Is the least-squares problem linear or nonlinear ? How
does the input sequence u0,...,N impact the resulting least-square problem?.

(c) (3 points) Consider a linear least-squares problem delivering a parameter estimation ✓̂:

✓̂ = argmin
✓

1

2
kA✓ � yk2⌃�1 (15)

1. What are we assuming about the data when using a least-squares fitting problem like (15).

2. Explain in detail the meaning of formula (78) in the Formula Sheet

3. How does the matrix ⌃�1 enter in the least-squares problem, i.e. how is it used? How should
it be selected?

(d) (2 points) Consider the following ARX one-step-ahead predictor

ŷ(t) = ay(t� 1) + bu(t� 1). (16)

Assume that the following data set is available

[y(0), y(1)] = [0, 1] (17)

[u(0), u(1)] = [1, 0] (18)

Write the predictor (16) in the linear regression form ŷ(t) = h(t)T ✓ and find the least-squares
estimate for a, b, given the available data.

Solution:

(a) The one-step ahead predictor reads as:

ŷk = �a1yk�1 + b0uk (19)

and the mismatch between the data and the predictor is given by:

ek = ŷk � yk = �yk � a1yk�1 + b0uk = d>
k ✓ � yk (20)

where dk =
⇥ �yk�1 uk

⇤

. According to our model, ek is uniformly distributed. As the noise
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is uncorrelated, the probability density of observing a sequence e0,...,N�1 is given by:

P [e0,...,N ] =
N�1
Y

k=0

f(ek) =

⇢

0.5 if e0,...,N 2 [�1, 1]
0 if ek /2 [�1, 1] for some k

(21)

For a given set of parameters ✓ =
⇥

a1 b0
⇤>

, the probability of obtaining a given noise
sequence is then:

P
h

ek = d>
k ✓ � yk for k = 0, . . . , N � 1

�

�

�

✓
i

=

⇢

1
2N

if d>
k ✓ � yk 2 [�1, 1] 8 k

0 otherwise
(22)

The maximum-likelihood problem is then:

max
✓

⇢

1
2N

if d>
k ✓ � yk 2 [�1, 1] 8 k

0 otherwise
(23)

If there exists ✓ such that |d>
k ✓ � yk|  1 for all k, then the solution set is

✓? =
n

✓ s.t |d>
k ✓ � yk|  1 8 k

o

(24)

and the solution is (possibly) not unique. If the solution set ✓? is empty, then any ✓ has
probability 0.

(b) The least-squares problem for the ARX model (13) reads as:

min
✓

1

2
kD✓ � yk2 (25)

where

A =

2

6

4

d>
0
...

d>
N

3

7

5

, y =

2

6

4

y0
...
yN

3

7

5

(26)

The least-squares problem is linear because the regressor A✓ is linear. The input sequence is
the second column of matrix A. This impacts the least-squares problem as the covariance of
the resulting parameter estimation

⌃✓̂ =
�

A>⌃�1A
��1

(27)

i.e. the input sequence u is directly impacting the “quality” of the estimation.

(c) 1. We are assuming that the data y are corrupted by normal centred (not necessarily white)
noise, and by that only. I.e. the data sequence y0,...,N reads as:

y = A✓true + e (28)

where ✓true is the true model parameters.

2. The expression:

⌃✓̂ =
�

A>⌃�1A
��1

(29)

describes the covariance of the parameter estimation, labelled ⌃✓̂. The formula can be
understood as follows. The normal centred noise sequence e is a vector or random variables.
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In that sense, the data we feed into the least-squares problem y = A✓true + e is also a
vector or random variables. Hence the outcome ✓̂ of the least-squares problem (15) (see
formula (77))

✓̂ =
�

A>⌃�1A
��1

A>⌃�1y (30)

is itself a random variable (it is in fact a linear function of the random vector y). Equation
(??) provides the covariance of that random variable, i.e.

E


⇣

✓̂ � µ✓̂

⌘⇣

✓̂ � µ✓̂

⌘>
�

(31)

where µ✓̂ = E
h

✓̂
i

.

3. Problem (15) can also be written as

✓̂ = argmin
✓

1

2
(A✓ � y)> ⌃�1 (A✓ � y) (32)

hence matrix ⌃�1 is a “weighting” of the error vector A✓ � y. Matrix ⌃ ought to be
selected as the covariance of the noise e corrupting the data.

(d) The linear regression form is

y(t) = [y(t� 1) u(t� 1)]



a
b

�

, (33)

and the least squares estimate of the parameters can be found by ✓̂LS = (HTH)�1HTy. Using
the available data we have that

H =



y(0) u(0)
y(1) u(1)

�

=



0 1
1 0

�

, y =



y(0)
y(1)

�

=



0
1

�

. (34)

Hence the least square estimate is ✓̂LS = [a b] = [1 0].
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3. Di↵erential-Algebraic and Implicit Di↵erential Equations

(a) (2 points) Consider the fully implicit DAE:

F (ẋ, x, z,u) = 0 (35)

where x 2 Rn
x , u 2 Rn

u and z 2 Rn
z . The model function F it then in the form:

F : Rn ⇥ Rn
x ⇥ Rn

z ⇥ Rn
u

| {z }

size of the arguments

7! Rm
|{z}

“size of the function output”

(36)

Specify what n and m are. In other words, what is the size of ẋ and what is the size of the vector
resulting from evaluating F. Justify!

(b) (2 points) Consider the semi-explicit DAE:

ẋ = f (x, z,u) (37a)

0 = g (x, z,u) (37b)

Rewrite it in the fully-implicit form (35). What would function F be in this case?

(c) (2 points) Let us do the opposite work, i.e. consider a fully-implicit DAE (35), rewrite it in a
semi-explicit form (37). Hints: don’t look for something complicated. You will need to introduce
new algebraic variables.

(d) (3 points) Consider the di↵erential equation:

2

4

1 1 0
0 0 1
1 1 1

3

5 ẋ = x (38)

1. Is (38) an implicit ODE or a DAE? Justify.

2. Show that we can rewrite this equation in a semi-explicit form having 2 algebraic variables and
one di↵erential variable. Hint: you need to do algebraic manipulations and time-di↵erentiations.

(e) (3 points) Perform an index reduction of the DAE:

ẋ = Ax+ bz (39a)

0 = g (x) (39b)

where z 2 R and function g : Rn
x ⇥R 7! Rm. Specify m. Assume that @g

@xb is full rank. What are
the consistency conditions? What condition is needed for the DAE to be of index larger than 2?

(f) (2 points) Consider the semi-explicit DAE:

ẋ = f (x, z,u) (40a)

0 = g (x) (40b)

Prove that (40) is at least of index 2.

Solution:

(a) 1. Clearly, the size of ẋ is the same as the one of x, i.e. n = n
x

.

2. Equation (35) ought to deliver ẋ and z for given x and u. That is, equation (35) has n+
n
z

= n
x

+ n
z

“unknowns”. Function F is essentially delivering m expressions F1, . . . ,Fm

that must be set to zero in order to provide ẋ and z. In order to provide enough “equations”
to solve, F = 0 must deliver as many equations as we have unknowns, i.e. m = n

x

+ n
z

.
This can be justified in the light of the Implicit Function Theorem, which requires the
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invertibility of rF

@w is full rank, where w =



ẋ
z

�

. In order to be full invertible, this

matrix ought to be square. An alternative acceptable answer is that m � n
x

+ n
z

, and
the set of equations defined by F = 0 has more equations than unknowns.

(b) We can simply write:

F (ẋ, x, z,u) =



ẋ� f (x, z,u)
g (x, z,u)

�

= 0 (41)

(c) This is a bit trickier, but fairly straightforward. We introduce additional algebraic variables �,
and write:

ẋ = � (42a)

0 = F (�, x, z,u) (42b)

This equation is a semi-explicit DAE.

(d) 1. Since matrix E is rank deficient (3rd line is the sum of the 1st and 2nd lines), (38) is a
DAE

2. We observe that DAE (38) reads as:

ẋ1 + ẋ2 = x1 (43a)

ẋ3 = x2 (43b)

ẋ1 + ẋ2 + ẋ3 = x3 (43c)

Subtracting (??) and (??) to (??), we get:

ẋ1 + ẋ2 = x1 (44a)

ẋ3 = x2 (44b)

0 = x1 + x2 � x3 (44c)

A time-di↵erentiation of (??) yields:

ẋ1 + ẋ2 = x1 (45a)

ẋ3 = x2 (45b)

0 = x1 + x2 � x3 (45c)

ẋ1 + ẋ2 � ẋ3 = 0 (45d)

We then do (??) - (??) + (??) to get:

ẋ1 + ẋ2 = x1 (46a)

ẋ3 = x2 (46b)

0 = x1 + x2 � x3 (46c)

0 = x1 � x2 (46d)



MOS ESS101 Page 10 of 9

A time-di↵erentiation of (??) yields:

ẋ1 + ẋ2 = x1 (47a)

ẋ3 = x2 (47b)

0 = x1 + x2 � x3 (47c)

0 = x1 � x2 (47d)

ẋ1 � ẋ2 = 0 (47e)

We then do (??)+(??) to get the semi-explicit DAE:

ẋ1 =
1

2
x1 (48a)

0 = x1 + x2 � x3 (48b)

0 = x1 � x2 (48c)

(e) We are dealing with a semi-explicit DAE, hence the index reduction requires time-di↵erentiations
of the algebraic equation (39b). The first step of the index reduction reads as:

ẋ = Ax+ bz (49a)

0 =
@g (x)

@x
ẋ =

@g (x)

@x
(Ax+ bz) (49b)

We note that @g(x)
@x b is scalar here, and di↵erent than zero since it is full rank. It follows that

(??) is of index 1. The consistency condition is simply:

g (x(0)) = 0 (50)

DAE (39) is of index 2 if @g(x)
@x b 6= 0, if @g(x)

@x b = 0, then it is of index at least 3.

(f) In order for DAE (40) to be of index 1, it would require @g
@z to be full rank. However, since g

is not a function of z, @g
@z = 0 holds, hence @g

@z is rank deficient. It therefore has to be of index
higher than 1.
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4. Newton The Newton methods aims at solving a set of equation r (x) = 0 numerically. To that end,
iterates the recursion:

@r (x)

@x
�x+ r (x) = 0 (51a)

x x+ ↵�x (51b)

where ↵ 2]0, 1] is the step-size.

(a) (2 points) Explain in words what condition(s) is (are) required for Newton to converge with ↵ = 1.

(b) (2 points) The local convergence rate of an exact, full-step Newton method can be summarized as:

kx+ � x?k  c kx� x?k2 (52)

where x? is a solution of r (x?). What is the meaning of this formula? When does it (doesn’t it)
occur?

Solution:

(a) Full Newton steps are guaranteed to converge in a neighborhood of a solution only. The “size”

of that neighborhood depends on how nonlinear r (x) is, and the Jacobian @r(x)
@x must be full

rank throughout this neighborhood.

(b) This formula states that the exact, full-step Newton iteration converges quadratically to a
solution. That is, the number of accurate digits in the x is doubled at every iteration. Achieving
the quadratic contraction rate requires basically what is stated in the question, namely:

• Exact Newton steps, i.e. an exact Jacobian @r(x)
@x is used and system (51a) is solved to

machine precision.

• Full steps are taken, i.e. ↵ = 1 throughout the iterations.

• The quadratic convergence rate is local, i.e. it occurs in a neighborhood of the solution
x?.
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5. Simulation

(a) (4 points) Write a pseudo-code (algorithm) that would deploy an IRK scheme for an implicit DAE
autonomous (no input)

F (ẋ, x, z) = 0 (53)

Be specific enough that someone could code it without knowing what the algorithm is about.

(b) (2 points) What is the maximum order (for a given number of stages s) that an IRK method can
achieve? What one needs to do to achieve that order?

(c) (2 points) Why are IRK methods with a large number of stages not favoured in practice? One
point is given for a short answer, an extra point for a more detailed discussion.

(d) (2 points) Why are high-order explicit RK methods often not the optimal choice? (the answer can
be in the form of a discussion, without formula)

(e) (3 points) Write the IRK equations for a semi-explicit DAE:

ẋ = f (x, z,u) (54a)

0 = g (x, z,u) (54b)

and specify what the Jacobian in the resulting Newton step looks like (no need for explicit nor
detailed expressions, just specify what function is di↵erentiating with respect to which variables.
Keep your answer simple.)

Solution:

(a) The pseudo-code will look like

Algorithm: Integration of implicit ODE

Input: x0, ↵ and �t
Set K = 0
for k = 0 : N � 1 do

while kr (K,xk,u(.))k > tol do
Evaluate:

r (K, z,xk) =

2

6

4

F (K1,xk +�t
Ps

i=1 a1iKi, z1)
...

F (Ks,xk +�t
Ps

i=1 asiKi, zs)

3

7

5

= 0

and

M =
h

@r(K,z,xk)
@K

@r(K,z,xk)
@z

i

Take the Newton step



K
z

�

 


K
z

�

� ↵M�1r (55)

Take the integrator step:

xk+1 = xk +�t

s
X

i=1

biKi (56)

return x0,...N

Obs: pseudo-code adequately tailored to implicit DAEs will also be counted as
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correct.

(b) The family of IRK methods includes the Gauss-Legendre collocation methods (this is easy to
verify from the equations provided in the appendix), which achieve an order up to 2s. That
is the maximum order that IRK methods can achieve for a given number of stages s. Gauss-
Legendre collocation schemes yield a very specific Butcher tableau (a, b, c) to be used in the
IRK scheme. The order 2s is achieved only if this specific Butcher tableau is used.

(c) IRK methods su↵er from the complexity of factorizing the Jacobian matrices involved in the
Newton method underlying the integration scheme. A large number of stages provides a very
high order, but requires also a heavy linear algebra. To detail this statement, we ought to specify
that IRK methods need to solve linear systems of the form (??). The matrix factorization is
dominating the computations involved in deploying an IRK scheme and are in the order of
the cube of the size of the matrix, i.e. O �n3s3

�

(where n is the number of states involved in
the ODE). This complexity is “to be paid” at every time step of the integrator, i.e. N = tf

�t ,
i.e. the overall complexity of the integration scheme is dominated by O ��t�1n3s3

�

. The ratio
complexity-order is then O ��t�1n3s3

�

versus O ��t2s
�

. A detailed complexity analysis shows
then that this ratio is unfavorable for s large, and is typically best at s 2 {2, 3}. If more
accuracy is needed, reducing the step size �t is then usually preferable than increasing the
order beyond 3.

(d) For a semi-explicit DAE, the IRK equations read as:

r (K, z,xk,u(.)) =

2

6

6

6

6

6

4

K1 � f (xk +�t
Ps

i=1 a1iKi, z1, u(tk + c1�t))
g (xk +�t

Ps
i=1 a1iKi, z1, u(tk + c1�t))

...
Ks � f (xk +�t

Ps
i=1 asiKi, zs, u(tk + cs�t))

g (xk +�t
Ps

i=1 asiKi, zs, u(tk + cs�t))

3

7

7

7

7

7

5

= 0 (57)

and have to be solved with respect to the variables K1,...,s and z1,...,s. If we gather all these
variables in a single vector, e.g.

w =

2

6

6

6

6

6

4

K1

z1
...

Ks

zs

3

7

7

7

7

7

5

(58)

then the Jacobian we need to use in the Newton step will be taken as:

@r

@w
(59)
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Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

@L
@q̇
� @L

@q
= Q, L (q, q̇, z) = T � V � z>C, C = 0, h�q, Qi = �W, 8 �q (60)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ>ṗ, V = mgp3 (61)

respectively, where p 2 R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

• In the case T = 1
2mq̇>W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations simplify

to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (62a)

W v̇ +
@C

@q

>
z = Q� @V

@q

>
(62b)

0 = C (q) (62c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (63)

“can be solved” in terms of z for a given y i↵ the Jacobian @r(y,z)
@z is full rank at the solution. More

specifically, it guarantees that there is a function � (y) such that

r (y,� (y)) = 0 (64)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

@z

@y
= �@r

@z

�1 @r

@y
(65)

• For solving a problem r (x) = 0, Newton iterates:

x x� ↵
@r

@x

�1

r (66)

until r (x) ⇡ 0 where ↵ 2 [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass

b1 . . . bs

Kj = f

 

xk +�t

s
X

i=1

ajiKi, u (tk + cj�t)

!

, j = 1, . . . , s (67a)

xk+1 = xk +�t

s
X

i=1

biKi (67b)

• For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk +�t · ⌧) ⇡ ˙̂x(tk +�t · ⌧) =
s
X

i=1

Ki`i(⌧), ⌧ 2 [0, 1] (68)

x(tk +�t · ⌧) ⇡ x̂(tk +�t · ⌧) = xk +�t

s
X

i=1

KiLi(⌧) (69)

where the Lagrange polynomials are given by:

`i(⌧) =
s
Y

j=1,j 6=i

⌧ � ⌧j
⌧i � ⌧j

, and Li(⌧) =

Z ⌧

0

`i(⇠)d⇠ (70)

The Lagrange polynomials satisfy the conditions of

Orthogonality:

Z 1

0

`i(⌧)`j(⌧) d⌧ = 0 for i 6= j (71a)

Punctuality: `i(⌧j) =

⇢

1 if j = i
0 if j 6= i

(71b)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk +�t · ⌧j) = f (x̂(tk +�t · ⌧j), u (tk +�t · ⌧j)) , in the explicit ODE case (72a)

F
⇣

˙̂x(tk +�t · ⌧j), x̂(tk +�t · ⌧j), u (tk +�t · ⌧j)
⌘

= 0, in the implicit ODE case (72b)

F
⇣

˙̂x(tk +�t · ⌧j), ẑj , x̂(tk +�t · ⌧j), u (tk +�t · ⌧j)
⌘

= 0, in the fully-implicit DAE case (72c)

• Gauss-Legendre collocation methods select the set of points ⌧1,...,s as the zeros of the (shifted) Legrendre
polynomial:

Ps (⌧) =
1

s!

ds

d⌧ s

h

�

⌧2 � ⌧
�s
i

(73)

They achieve the order kxN � x (tf)k = O ��t2s
�

.

• Maximum-likelihood estimation is based on

max
✓

P [ek = yk � ŷk for k = 1, . . . , N |✓] (74)

If the noise sequence is uncorrelated, then

P [ek = yk � ŷk for k = 0, . . . , N |✓] =
N
Y

k=1

P [ek = yk � ŷk |✓ ] (75)

• The solution of a linear least-squares problem

✓̂ = argmin
✓

1

2
kA✓ � yk2⌃�1

e
(76)
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reads as:

✓̂ =
�

A>⌃�1
e A

��1
A>⌃�1

e y (77)

and the covariance of the parameter estimation based is given by the formula:

⌃✓̂ =
�

A>⌃�1
e A

��1
(78)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead
predictor ŷ(k|k � 1) can be retrieved with

H(z)ŷ(z) = G(z)u(z) + (H(z)� 1)y(z) (79)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
kR (x)k2 (80)

uses the approximation:

@2J

@x2
⇡ @R

@x

> @R

@x
(81)

• The solution to an LTI system ẋ = Ax+Bu is given by:

x(t) = eAtx(0) +

Z t

0

eA(t�⌧)Bu(⌧)d⌧ (82)

and the transformation state-space to transfer function is given by:

G(s) = C (sI �A)�1
B +D (83)


