SOLUTIONS OF THE MODELING AND SIMULATION EXAM (ESSIOI)

Exeminstion dete: 16/08/11
Teecher: Paol Folcone

PROBLEM 1
(a) The bond graph of the system is.

I: J_{1}

(b) Since the bound graph of (a) does not have any causality complect the state space model will be en ODE.

Define

$$
\begin{aligned}
& \text { Define } \\
& x_{1}=i, x_{2}=\int_{0}^{+} \omega_{2}(r) d \tau, x_{3}=\omega_{1}, x_{4}=\int_{0}^{+} \omega_{2}(\tau) d\left(r, x_{5}=\omega_{2}\right. \\
& x_{6}=F_{1} x, x_{7}=\dot{x}, \mu=\operatorname{vin} \\
& \dot{x}_{1}=-\frac{k_{1}}{L} x_{1}-\frac{k}{L} x_{3}+\frac{1}{L} \mu \\
& \dot{x}_{2}=x_{3} \\
& \dot{x}_{3}=\frac{K_{1}}{S_{1}} x_{1}-\frac{b_{1}}{3_{1}} x_{3}-k_{s_{1}}\left(r_{1} x_{2}-r_{2} x_{4}\right) \\
& \dot{x}_{4}=x_{5} \\
& \dot{x}_{5}=\frac{r_{2} k_{31}}{J_{2}}\left(r_{1} x_{2}-r_{2} x_{4}\right)-\frac{b_{2}}{J_{2}} x_{5}-K_{32}\left(r_{2} x_{4}-x_{6}\right) \\
& \dot{x}_{6}=x_{7} \\
& \dot{x}_{7}=\frac{k_{32}}{r_{2} M}\left(r_{2} x_{4}-x_{6}\right)-g
\end{aligned}
$$

(e) If the two elestie springs ore removed, the state variables are constrained as follows: $\omega_{1}=\frac{r_{2}}{r_{1}} \omega_{2}$ and $\omega_{2} r_{2}=\dot{x}$
These edolitionel algebraic equations, with The previous contitutive lows, form a system of $D A E$.

PROBLEM 2
For a system, which is linear in the vector of parameters to estivate:

$$
y(t)=\theta^{\top} \varphi(t)+e(t)
$$

the least squares formula is:

$$
\hat{\theta}=\left[\frac{1}{N} \sum_{t=1}^{N} \varphi(t) \varphi^{i}(t)\right]^{-1} \sum_{t=1}^{N} \varphi(t) \cdot y(t)
$$

Hence, in oder to apply the LS formula to our system, we cen rewrite it as follows:

$$
\begin{aligned}
& \tilde{y}(t)=\theta^{\top} \varphi(t)+e(t) \text { with } \tilde{y}(t)=y(t)-0 \cdot 1 y(t-1) \\
& \theta=\left[\begin{array}{l}
\theta_{1} \\
b_{1}
\end{array}\right] \\
& \varphi(t)=\left[\begin{array}{c}
\cos y(t-2) \\
\mu(t)
\end{array}\right]
\end{aligned}
$$

Problem 3
The system considated in this problem hes transfer function:

$$
G(s)=\frac{c(s)}{T(s)}=\frac{1 / b}{1+5 / 6 s}
$$

where $\omega(s)$ and $T(s)$ are the Laplace tranforms of the rotational speed and the input torque, respectively. The spectrum $\Phi \omega(\omega)$ of ω is:

$$
\Phi_{a}(\omega)=|G(J \omega)|^{2} \Phi_{T}(\omega)=|G(J \omega)|^{2}=\frac{1 / b^{2}}{1+J / b^{2}} \omega^{2}
$$

PROBLEM 4

1. true
2. False
3. False
4. false
5. false
