ESS100 Modelling and simulation Solutions to exam Mon, 22 October 2007

Exercise 1

(a) The parameters in an ARX-model can be determined in one step solving a linear equation system. For an OE-model it is necessary to use an iterative method to determine the parameters and this takes time. There is also a risk that the solution is a local minima.
(b) Index $=2$.
(c)

$$
\begin{aligned}
& \Phi_{y}(\omega)=|G(j \omega)|^{2} \Phi_{u}(\omega)+\Phi_{e}(\omega)=G(j \omega) G(-j \omega) \Phi_{u}(\omega)+\Phi_{e}(\omega) \\
& \Phi_{y}(\omega)=\frac{1}{j \omega+1} \frac{1}{-j \omega+1} \Phi_{u}(\omega)+\Phi_{e}(\omega)=\frac{1}{\omega^{2}+1} \Phi_{u}(\omega)+\Phi_{e}(\omega)
\end{aligned}
$$

Exercise 2

(a) We can write the predictor as

$$
\hat{y}(t \mid \theta)=\theta^{T} \varphi(t)
$$

with $\theta=[a b]^{T}$ and $\varphi=[1 t]^{T}$. The least squares estimate then becomes

$$
\hat{\theta}=\left(\begin{array}{ll}
\sum_{t=1}^{N} 1 & \sum_{t=1}^{N} t \\
\sum_{t=1}^{N} 2 & \sum_{t=1}^{N} t^{2}
\end{array}\right)^{-1}\binom{\sum_{t=1}^{N} y(t)}{\sum_{t=1}^{N} t y(t)}
$$

using the values given in the exercise gives

$$
\hat{\theta}=\left(\begin{array}{cc}
4 & 10 \\
10 & 30
\end{array}\right)^{-1}\binom{5}{10}=\binom{2.5}{0.5}
$$

(b) When the noise has variance 1, the covariance matrix becomes

$$
P_{N}=E\left\{\left(\theta_{N}-\theta_{0}\right)\left(\theta_{N}-\theta_{0}\right)^{T}\right\}=\frac{1}{N} \bar{R}^{-1}
$$

The estimate of the covariance matrix then becomes

$$
\begin{aligned}
\hat{P}_{N}= & \left(\begin{array}{ll}
\sum_{t=1}^{N} 1 & \sum_{t=1}^{N} t \\
\sum_{t=1}^{N} 2 & \sum_{t=1}^{N} t^{2}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
N & N(N+1) / 2 \\
N(N+1) / 2 & N(N+1)(2 N+1) / 6
\end{array}\right)^{-1} \\
& =\frac{12}{N^{2}(N+1)(N-1)}\left(\begin{array}{cc}
N(N+1)(2 N+1) / 6 & -N(N+1) / 2 \\
-N(N+1) / 2 & N
\end{array}\right)
\end{aligned}
$$

For large values of N we have

$$
\hat{P}_{N} \approx\left(\begin{array}{cc}
1 / N & -6 / N^{2} \\
-6 / N^{2} & 12 / N^{3}
\end{array}\right)
$$

The diagonal elements describe the variance of the parameters a and b. The variance for the parameter decays as N^{-1} and the variance of the estimate of b decay as $12 N^{-3}$. Which is to be shown.

Exercise 3

No conflict in the rules of causality, i.e. it is possible to describe the system as system of ordinary first order differential equations.

Exercise 4

$$
\begin{aligned}
\ddot{x}_{p} & =\frac{1}{m_{p}}\left(-b_{p} \dot{x}_{p}+k_{r}\left(x_{j}-x_{p}\right)+m_{p} \cdot g\right) \\
\ddot{x}_{j} & =\frac{1}{m_{j}}\left(-b_{i} \dot{x}_{j}-k_{r}\left(x_{j}-x_{p}\right)+m_{j} g\right) \\
x_{1}=x_{p} x_{2} & =\dot{x}_{p} \quad x_{3}=x_{j} \quad x_{n}=\dot{x}_{j} \\
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =\frac{1}{m_{p}}\left(-b_{p} x_{2}+k_{r}\left(x_{3}-x_{1}\right)+m_{p} g\right) \\
\dot{x}_{3} & =x_{4} \\
\dot{x}_{4} & =\frac{1}{m_{j}}\left(-b_{j} x_{4}-k_{r}\left(x_{3}-x_{1}\right)+m_{j} g\right)
\end{aligned}
$$

Exercise 5

(a)
a) $\dot{x}=-2 x$

$$
\begin{array}{ll}
R-K: \quad & x_{n+1}=x_{n}+h h_{2} \\
& h_{2}=f\left(x_{n}+\frac{h}{2} h_{1}\right) \\
& h_{1}=f\left(x_{n}\right)
\end{array}
$$

$$
k_{1}=-2 x_{n}
$$

$$
\begin{aligned}
& h_{1}=-2 x_{n} \\
& h_{2}=f\left(x_{n}+\frac{h}{2} h_{1}\right)=f\left(x_{n}+\frac{h}{2}\left(-2 x_{n}\right)\right)=f\left(x_{n}(1-h)\right) .
\end{aligned}
$$

$$
=-2 x_{n}(1-h)
$$

$$
x_{n+1}=x_{n}-2 h x_{n}(1-h)=(1-2 h(1-h)) x_{n}
$$

Stable if

$$
|1-2 h(7-h)|<1 \quad h>0
$$

$$
-1<1-2 h(1-h)<1
$$

$$
1-2 h(1-h)>-1 \quad 1-2 h(1-h)<1
$$

$$
-2 h(1-h)>-2 \quad-2 h(1-h)<0
$$

$$
\begin{gathered}
h(1-h)<1 \\
h<1
\end{gathered}
$$

$$
1-h>0
$$

$0<h<1$
(b)

$$
\begin{aligned}
x_{1} & =x(0,2)=x_{0}(1-2 \cdot 0.2(1-0.2))= \\
& =1(1-0 \mu(0,8))=0,68 \\
x_{2} & =0,68(1-2: 0.2(1-0.2))=0.68 \cdot 0.68=0.68^{2}
\end{aligned}
$$

