
ESS100 Modelling and simulation
Solution to exam Tue, 14 December 2004

Exercise 1

(a) The implicit numerical methods have a larger stability region compared with
explicit methods. Unfortunately, the implicit methods are more complex to solve.

(b) An OE-model can not be written as a linear regresion ŷ = θT φ(t), because
φ(t) for an OE-model will include old model output signals and these a dependent
on the parameter vector θ. For OE-models an iterative Gauss-Newton method is
necessary.

(c) System is on standard form:
[

I 0
0 N

]
ẋ +

[ −A 0
0 I

]
x =

[
B
D

]
u

The smallest integer k for which Nk = 0, is called the index. For our system
index=2, because N1 6= 0 but N2 = 0.

(d) Stiff differential equations are characterized by the fact that their solutions
include both fast and slow components, this usually leads to problem during sim-
ulation (time-consuming).

(e) There exist more developed methods for linear that nonlinear systems, tex
frequency analysis, poles-zeros etc. The linearized model is only valid in a region
closed to the stationary point around which the system has been linearized, not a
global model.

Exercise 2

For the closed loop system y and u can be expressed as:

y =
1

1 + FG
(Gv + He), u =

1

1 + FG
(v − FHe)
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or fourier transformed

Y (ω) =
1

1 + F (iω)G(iω)
(G(iω)V (ω) + H(iω)E(ω)),

U(ω) =
1

1 + F (iω)G(iω)
(V (ω)− F (iω)H(iω)E(ω))

The spectrum for u can than be calculated as

Φu(ω) = |U(ω)|2 = U(ω)U(ω) =
1

|1 + F (iω)G(iω)|2 (Φv(ω)+|F (iω)H(iω)|2Φe(ω))

and the cross spectrum can be calculated in a similar way

Φyu(ω) = Y (ω)U(ω) =
1

|1 + F (iω)G(iω)|2 (G(iω)Φv(ω)−F (iω)|H(iω)|2Φe(ω))

The estimation of G(p) can then given as

Ĝ(iω) =
Φyu(ω)

Φu(ω)
=

G(iω)Φv(ω)− F (iω)|H(iω)|2Φe(ω)

Φv(ω) + |F (iω)H(iω)|2Φe(ω)

If v(t) ≈ 0 the spectrum for v will be 0, i.e. Φv(ω) = 0 and the estimation of G(p)
then becomes

Ĝ(iω) =
−1

F (iω)

i.e. the estimation of G(p) is not correct. This verifies that for system in closed
loop spectral analysis does not work.

Exercise 3

Introduce F as state variable x3. The dynamics for x3 is according to the in-
struction

ẋ3 = − 1

T
x3 +

1

T
u

The dynamics for the fan process becomes:

ẋ1 = x2

ẋ2 = − g
r+L

sinx1 − k
m

x2 + r
m(r+L)2

x3cosx1

ẋ3 = − 1
T
x3 + 1

T
u

or
ẋ = f(x, u)
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Linearize around the point (x0 = 0, u0 = 0):

∆ẋ =
∂f

∂x

∣∣∣∣
x0,u0

∆x +
∂f

∂u

∣∣∣∣
x0,u0

∆u = A∆x + B∆u

where

∂f

∂x

∣∣∣∣
x0,u0

=




0 1 0
− g

r+L
− k

m
r

m(r+L)2

0 0 − 1
T


 ,

∂f

∂u

∣∣∣∣
x0,u0

=




0
0
1
T




The linear model then becomes:

∆ẋ =




0 1 0
− g

r+L
− k

m
r

m(r+L)2

0 0 − 1
T


 ∆x +




0
0
1
T


 ∆u

Exercise 4

(a) Bond graph according to figure:

(b) Choose state-variables as the flow variables at the I-elements and effort vari-
ables at the C-elements. From the bond graph five state variables can be found, v1,
v2, v3, Fk1 and Fk2.

v̇1 = 1
m

Fm1 = 1
m

(F −∆F1) = 1
m

(F − Fk1 − Fd1) = 1
m

(F − Fk1 − d(v1 − v2))
v̇2 = 1

m
Fm2 = 1

m
(∆F1 −∆F2) = 1

m
(Fk1 + d(v1 − v2)− Fk2 − d(v2 − v3))

v̇3 = 1
m

Fm3 = 1
m

∆F2 = 1
m

(Fk2 + d(v2 − v3))

Ḟk1 = k(v1 − v2)

Ḟk2 = k(v2 − v3)
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The output signal can be derived as L0 + Fk1/k + Fk2/k. The state space model
becomes:

ẋ =




−d/m d/m 0 −1/m 0
d/m −2d/m d/m 1/m −1/m

0 d/m −d/m 0 1/m
k −k 0 0 0
0 k −k 0 0




x +




1/m
0
0
0
0




u

y = L0 +
[

0 0 0 1/k 1/k
]
x

(c) Look at the structure above and augment for n wagons.

Exercise 5

(a) Introduce a state variable at each integrator, in this case three states, x1, x2

and x3, on the right hand side of each integrator we have the state variables and
on the left hand side we have the time derivative of the state variables. From the
Simulink scheme the derivatives can now be calculated as:

ẋ1 = u− 5x1 + 2x2 + x3

ẋ2 = u− 0.5x2 + x3

ẋ3 = u− 200x3

the output signal is given as the sum of the state variables, i.e.

y = x1 + x2 + x3 = [1 1 1]x

on state space form the model can be written as

ẋ =



−5 2 1
0 −0.5 1
0 0 −200


 x +




1
1
1


 u

y = [1 1 1]x

(b) Step response b belongs to the Simulink-model. The system has only real
poles (A-matrix on diagonal form =¿ diagonal elements = eigenvalues) this the
system non-oscillating, i.e. not response a. The slowest mode in the system will
determine the transient, approximative time constant T = 2s (T = 1/0.5). From
the figure step response b can now be identified, because response c has a time
constant of approximately 5s.
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(c) x3 corresponds to the fastest dynamics and is approximately 50 times faster
than the other dynamics. Approximate with a static relationship 200x3 = u. Re-
place x3 with u/200 in the model.

The simplified model becomes

ẋ =

[ −5 2
0 −0.5

]
x +

[
201/200
201/200

]
u

y = [1 1]x + 1/200u
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