
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Signals and Systems
Control, Automation and Mechatronics

ESS 076 Nonlinear and Adaptive Control
Final exam 2010-05-26

V 14.00 – 18.00

Teacher: Bo Egardt, tel 3721.

The following items are allowed to bring to the exam:

• The course textbook (Glad/Ljung: Control Theory or Slotine/Li: Applied
Nonlinear Control).

• ESS076 Supplement.

• Beta.

Grading: The exam consists of 5 problems of in total 30 points. The nominal
grading is 12 (3), 18 (4) and 24 (5). Solutions may be short, but should always be
clear and well motivated!
Grading results are posted not later than June 10 at the billboard on the 5th floor.
Review of the grading is offered on June 10 at 12.30 – 13.30. If you cannot attend
at this occasion, any objections concerning the grading must be filed in written
form not later than two weeks after the regular review occasion.

Note that solutions should be given in English!

GOOD LUCK!



Problem 1.

a. By using a quadratic Lyapunov function, show that the origin is an asymp-
totically stable stationary point of the system

ẋ1 = 2x2

ẋ2 = −x1 − x2(1 − x2

1)

and estimate its region of attraction. (2 p)

b. An LTI system with transfer function G(s) is connected in feedback with
a static nonlinearity, as depicted below. Give a sufficient condition on the
nonlinearity f(·) for the closed-loop system to be input-output stable, if
G(s) fulfills Re(G(iω)) > −1. (2 p)
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-

c. Show that the system depicted below, with input u and output y, and with
the nonlinearity f in the sector [0,∞], is passive. (2 p)
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d. A linear system with the transfer function G(s) is connected in feedback
with the nonlinearity −f(·). The figure below shows the Nyquist curve
G(iω) and the curve −1/Yf (C), where Yf(C) is the describing function of
the nonlinearity. What can be deduced from the figure in terms of possible
self-oscillations and their stability? Give your conclusions using the letter
markings in the figure. (2 p)

6
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G(iω)

−1/Yf (C)

e. Determine a control law for the system

ẋ1 = ex2 − 1

ẋ2 = u

y = x1

so that the relation between reference signal and output becomes

ÿ + ẏ + y = r

(2 p)

Solution:

a. V = 1

2
x2

1 + x2
2 gives V̇ = −2x2

2(1 − x2
1) ≤ 0 for |x1| ≤ 1. According to

LaSalle’s theorem, solutions starting in the set {x|V (x) < 1/2} converges
to the set where V̇ ≡ 0, but x2 ≡ 0 implies x1 ≡ 0 from the system equa-
tions. Hence, the origin is a.s. with region of attraction {x|V (x) < 1/2}
(the interior of an ellipsoid).
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b. Apply the circle criterion with k1 = 0 and k2 = 1. The system is I/O-stable
if f(0) = 0 and 0 ≤ f(x)/x ≤ 1, x 6= 0.

c. Using V (x) =
∫ x

f(σ)dσ (which is nonnegative since f ∈ [0,∞]) gives
V̇ = f(x) · (u − y) = u · y − y2 ≤ u · y.

d. A and C stable oscillations, B unstable oscillation. This conclusion is
drawn by comparing with figures or/and arguments in the course book.

e. ẏ = ex2 − 1 and ÿ = ex2u suggests the control law u = −1 + e−x2(1 −
x1) + e−x2r.
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Problem 2.
Consider the system

ẋ1 = x2

ẋ2 = x1 − sat(2x1 + x2).

where sat(·) is the saturation function,

sat(x) =











−1, x < −1

x, −1 ≤ x ≤ 1

1, x > 1

a. Show that the origin is asymptotically stable. (2 p)

b. Show that the origin is not globally asymptotically stable. (3 p)

Solution:

a. Linearization around the origin gives eigenvalues with negative real values,
so the origin is asymptotically stable by Lyapunov-Poincaré.

b. The system has another stationary point in x1 = 1, x2 = 0. A trajectory
starting in that point never reaches the origin, so the origin is not globally
asymptotically stable. Another way to prove that trajectories exist that never
reach the origin is to use the boundary x1x2 = c for a large constant c,
or for example a boundary defined by the lines x1 = a and x2 = b for
large values of a and b (draw a figure and indicate the direction of ẋ on the
boundary).

Problem 3.
Consider the nonlinear system

ẋ1 = sin x2 + x3

ẋ2 = x3

ẋ3 = u

y = x1

a. Determine a nonlinear state feedback law that results in a linear input-output
relation. (2 p)

b. Determine the zero dynamics. (1 p)
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c. Suggest a redefinition of the system output that makes it possible to exactly
linearize the system in all its states. (2 p)

Solution:

a. Differentiate to get ẏ = ẋ1 = sin x2 + x3 and ÿ = x3 cos x2 + u which
suggests the control law u = r − x3 cos x2, giving the closed-loop equation
ÿ = r.

b. With new state variables z1 = y = x1 and z2 = ẏ = sin x2 + x3, we get the
closed-loop system

ż1 = z2

ż2 = r

A one-to-one variable transformation can be obtained by defining e.g. z3 =
x2. Now, put r ≡ 0 and z1(0) = z2(0) = 0 to reveal the zero dynamics,
giving ż3 + sin z3 = 0.

c. Choose e.g. y = x1 − x2, leading to

ẏ = sin x2

ÿ = x3 cos x2...
y = −x2

3 sin x2 + u cos x2

and the control law u = 1

cos x2

(x2
3 sin x2 + r) gives

...
y = r.
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Problem 4.
A certain disease is characterized by an increased amount of uric acid in the blood.
The excess uric acid can be counteracted by a medicine that is injected at the rate
u. A greatly simplified model, describing how the amount of uric acid x depends
on the medicine taken, is given by

ẋ = 1 − x − u

Consider now the problem to determine a suitable injection rate of medicine to
eliminate the uric acid. Assume x(0) = 1 and that the desired final state is x(tf ) =
0. It is desirable to reach the final state rapidly, but it is also desirable to limit the
amount of medicine because of the risk of side-effects. Therefore, the following
criterion should be minimized:

∫ tf

0

(k + u2(t))dt

Here, k > 0 is a given constant. Determine the optimal rate of injected medicine,
and the corresponding final time tf ! (5 p)

Solution: This is an optimal control problem with L = k+u2, Φ = 0, Ψ(x(tf )) =
x(tf ) = 0. Minimization of the Hamiltonian H = k + u2 + λ(1 − x − u) gives
u = λ/2. The adjoint equation is given by

λ̇ = −HT
x = λ; λ(tf) = µ

and has the solution λ(t) = Cet for some C. This implies u = C
2
et and the

differential equation for x can be solved:

x(t) = 1 +
C

4
(e−t − et)

Using the property H ≡ 0 for the Hamiltonian, applied at t = 0 gives C = 2
√

k,
and at t = tf gives the equation

k + Cetf − C2

4
e2tf = 0

which in turn gives the solution etf = 1+
√

1+k
√

k
.

Problem 5.
An integrating process with unknown (and in practice slowly varying) gain b,

G(s) =
b

s
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shall be controlled by a model reference adaptive controller. The desired closed-
loop dynamics is given by the reference model

Gm(s) =
bm

s + am

a. Design an adaptive controller and give equations for the control law and the
parameter adaptation rule. (3 p)

b. Show that the control error tends to zero for your adaptive controller, as-
suming b is constant. Which additional assumption(s) are needed? (2 p)

Solution:

a. The control law u = −s0y + t0r gives the closed-loop system

y =
bt0

p + bs0

r

The stability based approach starts from the model

e =
b

p + am

[u + s0

0y − t00r],

where t00 = bm/b and s0
0 = am/b. With the control law u = −s0y + t0r we

get the error model

e =
b

p + am

[−s̃0y + t̃0r]

The parameter adjustment is now
[

ṡ0

ṫ0

]

= γ

[

y
−r

]

e

b. Use the Lyapunov function V = e2 + α(s̃0
2 + t̃0

2
) and proceed as shown in

the course supplement. We need to assume that the sign of b is known.
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