Examination	ENM061 Power Electronic Converters	
Date and time	Wednesday April 24 th , 2019, 14:00 – 18:00	
Teacher responsible:	Mebtu Beza/Zeyang Geng, mobile no. +46723850963	
Authorised Aids:	Chalmers-approved calculators	
Grades:	U, 3, 4 or 5. (The limit for a grade of 3, 4 and 5 on the exam are 20, 30, and 40 pts., respectively. The maximum number of points in the exam is 50.)	

The questions are not arranged in any kind of order and a formula sheet is attached in the last page.

1) Briefly answer the following questions. (7 pts.)

- (a) In addition to increasing efficiency, why are power losses in switch-mode power converters important to consider? (2 pts.)
- (b) Plot the Steadystate voltage-current characteristic of a MOSFET and a thyristor. What are the basic operation differences between the two components? (3 pts.)
- (c) Describe how the use of an air-gap in an inductor increases the maximum saturating current and hence its operating range in DC/DC converters? (2 pts.)
- 2) The flyback converter below has a protective winding (N_2) with the total turns ratio of the transformer as $N_1: N_2: N_3 = 0.5: 1: 1$ and input voltage $V_d = 25V$. The switching frequency $f_{sw} = 30kHz$, the duty cycle D = 0.4 and the mutual inductance $L_m = 120\mu H.$ (7 pts.)
 - (a) For $R_{load} = 15\Omega$ and 150Ω , calculate the average output voltage V_o . (4 pts.)
 - (b) For case a, sketch the waveforms for v_{sw} , i_d and i_D . (3 *pts.*)

3) The isolated 3-winding forward converter with $N_1: N_3: N_2 = 2: 1: 2$ shown below operates with an output voltage (V_o) of 20V and an output power (P_o) of 60 W for an input voltage (V_d) of 30V and a switching frequency (f_{sw}) of 30 kHz. (11 pts.)

- (a) Calculate the inductance (L) and the mutual inductance (L_m) in order to obtain the peak-to-peak inductor current ripple and magnetizing current ripple to be 15% and 1.5% of the average output current, respectively. (3 pts.)
- (b) Plot the inductor and capacitor current waveforms as well as i_1 , i_3 , i_m and v_{sw} for one switching cycle. Show the important points clearly. (4 *pts.*)
- (c) Calculate the minimum capacitance (*C*) in order to limit the maximum peak-to-peak output voltage ripple to 2% of the average output voltage. (*2 pts.*)
- (d) Calculate the corner frequency of the output filter and compare with the switching frequency if the requirement is met for good filtering. (2 pts.)

4) For the single-phase inverter shown below with an input voltage $V_d = 300V$, (8 pts.)

- (a) For a square wave operation, which order of harmonics is present in the output ac-current and the input dc-current? Can you explain what the impact of using a 3-phase inverter on these harmonics is? (4 pts.)
- (b) What are advantages and disadvantages of using square-wave operation? (2 pts.)
- (c) Using the inverter above, how can we improve the low-order harmonic content of the output voltage? (2 pts.)

5) The three-phase diode rectifier shown below is used with a current-stiff load with $I_d = 15 A$ and a negligible source inductance. The system operates with a 50Hz balanced 3-phase source with RMS Line-to-Line voltage of 400V. (5 pts.)

- (a) Plot the source voltage and current in phase a. what is the input displacement power factor (DPF)? (2 pts.)
- (b) Plot the output voltage waveform and calculate its average value. (3 pts.)
- 6) The thyristor rectifier circuit shown below is connected to the two-phases of a 50 Hz, 180 V (peak) voltage sources, v_{s1} and v_{s2} with a phase shift of 180°. Assume that the source inductance (L_s) is 5 mH and that $I_d = 15 A$ (current-stiff source). For a delay angle (α) of 30° , (8 pts.)
 - (a) plot i_{s1} , i_{s2} , v_d and calculate the average value of V_d . (4 pts.)
 - (b) Calculate the average value of V_d if the delay angle changes to 150°. (2 pts.)
 - (c) plot i_{s1} , i_{s2} , v_d and calculate the average value of V_d if the thyristors are changed to diodes and the source inductances are negligible. (2 *pts.*)

- 7) A MOSFET of type IRF 640N is exposed to a continuous power dissipation of 2.5 W. The ambient temperature is 20°C. Without any heat sink or forced cooling, the junction-to-ambient thermal resistance is 62 °C/W. (*4 pts.*)
 - (a) Motivate if a heat sink is needed for a 150 °C maximum working temperature of the MOSFET? (2 pts.)
 - (b) With a heat sink used, calculate the maximum junction-to-ambient thermal resistance to limit the junction temperature of the MOSFET below 100 °C. (2 pts.)

Fourier calculations

Symmetry	Condition Required	a_h and b_h
Even	f(-t)=f(t)	$b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$
Odd	f(-t) = -f(t)	$a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$
Half-wave	$f(t) = -f(t + \frac{1}{2}T)$	$a_h = b_h = 0$ for even h
	-	$a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$ for odd h
		$b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) \ d(\omega t)$ for odd h
Even	Even and half-wave	$b_h = 0$ for all h
quarter-wave		$a_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(h\omega t) \ d(\omega t) & \text{for odd } h \end{cases}$
		$\begin{bmatrix} 0 & \text{for even } h \end{bmatrix}$
Odd	Odd and half-wave	$a_h = 0$ for all h
quarter-wave		$b_{h} = \begin{cases} \frac{4}{\pi} \int_{0}^{\pi/2} f(t) \sin(h\omega t) \ d(\omega t) & \text{for odd } h \end{cases}$
		0 for even h

Definition of RMS-value:	
$F_{RMS} = $	$\frac{1}{T}\int_{t_o}^{t_o+T} f(t)^2 dt$

Trigonometry

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha)\sin(\beta))$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha x)dx = -\frac{1}{a}\cos(\alpha x), \quad \int x\sin(\alpha x)dx = \frac{1}{a^{2}}(\sin(\alpha x) - \alpha x\cos(\alpha x)), \quad \int \cos(\alpha x)dx = \frac{1}{a}\sin(\alpha x)$$

$$\int x\cos(\alpha x)dx = \frac{1}{a^{2}}(\cos(\alpha x) + \alpha x\sin(\alpha x))$$

$$PF = \frac{P}{S} = \frac{V_{s}I_{s1}\cos\phi_{1}}{V_{s}I_{s}}, \quad DPF = \cos\phi_{1}, \quad \% THD_{i} = 100\frac{I_{dis}}{I_{s1}} = 100\frac{\sqrt{I_{s}^{2} - I_{s1}^{2}}}{I_{s1}} = 100\sqrt{\sum_{h\neq 1}(\frac{I_{sh}}{I_{s1}})^{2}}$$

Electromagnetics

$$e = \frac{d}{dt}\psi \qquad \psi = N\phi \qquad \phi = BA \qquad R = \frac{l}{A\mu_r\mu_0} \qquad \qquad L = \frac{\Psi}{i}$$
$$NI = R\phi = mmf \qquad N\phi = LI \qquad L = N^2/R \qquad \qquad W = \frac{1}{2}Li^2$$

Capacitor and inductor current-voltage relationship

$$i_C = C \frac{dv_C}{dt} \qquad \qquad v_L = L \frac{di_L}{dt}$$