Examination	ENM061 Power Electronic Converters
Date and time	Wednesday April 24 ${ }^{\text {th }}, 2019,14: 00-18: 00$
Teacher responsible:	Mebtu Beza/Zeyang Geng, mobile no. +46723850963
Authorised Aids:	Chalmers-approved calculators
Grades:	U, 3, 4 or 5. (The limit for a grade of 3, 4 and 5 on the exam are 20, 30, and 40 pts., respectively. The maximum number of points in the exam is 50.)

The questions are not arranged in any kind of order and a formula sheet is attached in the last page.

1) Briefly answer the following questions. (7 pts.)
(a) In addition to increasing efficiency, why are power losses in switch-mode power converters important to consider? (2 pts.)
(b) Plot the Steadystate voltage-current characteristic of a MOSFET and a thyristor. What are the basic operation differences between the two components? ($\mathbf{3} \mathbf{~ p t s .)}$
(c) Describe how the use of an air-gap in an inductor increases the maximum saturating current and hence its operating range in DC/DC converters? (2 pts.)
2) The flyback converter below has a protective winding $\left(N_{2}\right)$ with the total turns ratio of the transformer as $N_{1}: N_{2}: N_{3}=0.5: 1: 1$ and input voltage $V_{d}=25 \mathrm{~V}$. The switching frequency $f_{\text {sw }}=30 \mathrm{kHz}$, the duty cycle $D=0.4$ and the mutual inductance $L_{m}=120 \mu \mathrm{H}$. (7 pts.)
(a) For $R_{\text {load }}=15 \Omega$ and 150Ω, calculate the average output voltage V_{o}. (4 pts.)
(b) For case a, sketch the waveforms for $v_{s w}, i_{d}$ and i_{D}. (3 pts.)

3) The isolated 3-winding forward converter with $N_{1}: N_{3}: N_{2}=2: 1: 2$ shown below operates with an output voltage $\left(V_{o}\right)$ of 20 V and an output power $\left(P_{o}\right)$ of 60 W for an input voltage $\left(V_{d}\right)$ of 30 V and a switching frequency $\left(f_{s w}\right)$ of 30 kHz . (11 pts.)

(a) Calculate the inductance (L) and the mutual inductance $\left(L_{m}\right)$ in order to obtain the peak-to-peak inductor current ripple and magnetizing current ripple to be 15% and 1.5% of the average output current, respectively. (3 pts.)
(b) Plot the inductor and capacitor current waveforms as well as i_{l}, i_{3}, i_{m} and $v_{s w}$ for one switching cycle. Show the important points clearly. (4 pts.)
(c) Calculate the minimum capacitance (C) in order to limit the maximum peak-to-peak output voltage ripple to 2% of the average output voltage. (2 pts.)
(d) Calculate the corner frequency of the output filter and compare with the switching frequency if the requirement is met for good filtering. (2 pts .)
4) For the single-phase inverter shown below with an input voltage $V_{d}=300 \mathrm{~V}$, (8 pts.)

(a) For a square wave operation, which order of harmonics is present in the output ac-current and the input dc-current? Can you explain what the impact of using a 3-phase inverter on these harmonics is? (4 pts.)
(b) What are advantages and disadvantages of using square-wave operation? (2 pts.)
(c) Using the inverter above, how can we improve the low-order harmonic content of the output voltage? (2 pts.)
5) The three-phase diode rectifier shown below is used with a current-stiff load with $I_{d}=15 \mathrm{~A}$ and a negligible source inductance. The system operates with a 50 Hz balanced 3-phase source with RMS Line-to-Line voltage of 400 V . (5 pts.)

(a) Plot the source voltage and current in phase a. what is the input displacement power factor (DPF)? (2 pts.)
(b) Plot the output voltage waveform and calculate its average value. (3 pts.)
6) The thyristor rectifier circuit shown below is connected to the two-phases of a $50 \mathrm{~Hz}, 180 \mathrm{~V}$ (peak) voltage sources, $v_{s 1}$ and $v_{s 2}$ with a phase shift of 180°. Assume that the source inductance (L_{s}) is $5 \mathbf{~ m H}$ and that $I_{d}=15 A$ (current-stiff source). For a delay angle (α) of 30°, (8 pts.)
(a) plot $i_{s 1}, i_{s 2}, v_{d}$ and calculate the average value of V_{d}. (4 pts.)
(b) Calculate the average value of V_{d} if the delay angle changes to 150°. (2 pts .)
(c) plot $i_{s 1}, i_{s 2}, v_{d}$ and calculate the average value of V_{d} if the thyristors are changed to diodes and the source inductances are negligible. (2 pts.)

7) A MOSFET of type IRF 640N is exposed to a continuous power dissipation of 2.5 W . The ambient temperature is $20^{\circ} \mathrm{C}$. Without any heat sink or forced cooling, the junction-to-ambient thermal resistance is $62^{\circ} \mathrm{C} / \mathrm{W}$. (4 pts.)
(a) Motivate if a heat sink is needed for a $150{ }^{\circ} \mathrm{C}$ maximum working temperature of the MOSFET? (2 pts.)
(b) With a heat sink used, calculate the maximum junction-to-ambient thermal resistance to limit the junction temperature of the MOSFET below $100^{\circ} \mathrm{C}$. (2 pts.)

Formula sheet for the final exam of Power Electronic Converters (ENM061)

Fourier calculations

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_{h} and b_{h}
Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$\begin{aligned} & a_{h}=b_{h}=0 \text { for even } h \\ & a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t) \quad \text { for odd } h \\ & b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \quad \text { for odd } h \end{aligned}$
Even quarter-wave	Even and half-wave	$\begin{aligned} & b_{h}=0 \text { for all } h \\ & a_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$
Odd quarter-wave	Odd and half-wave	$\begin{aligned} & a_{h}=0 \text { for all } h \\ & b_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$

Definition of RMS-value:

$F_{R M S}=\sqrt{\frac{1}{T} \int_{t_{o}}^{t_{o}+T} f(t)^{2} d t}$

Definition of RMS-value with Fourier-series:
$F_{R M S}=\sqrt{F_{0}^{2}+\sum_{n=1}^{\infty} F_{n}^{2}}=\sqrt{\left(\frac{a_{0}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{\sqrt{a_{n}^{2}+b_{n}^{2}}}{\sqrt{2}}\right)^{2}}$

Trigonometry

$\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1$
$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \quad \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
$\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \quad \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$
$\sin (\alpha) \sin (\beta)=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)) \quad \sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
$\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta))$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x), \int x \sin (a x) d x=\frac{1}{a^{2}}(\sin (a x)-a x \cos (a x)), \int \cos (a x) d x=\frac{1}{a} \sin (a x)$
$\int x \cos (a x) d x=\frac{1}{a^{2}}(\cos (a x)+a x \sin (a x))$
$P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}, D P F=\cos \phi_{1}, \% T H D_{i}=100 \frac{I_{d i s}}{I_{s 1}}=100 \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}}=100 \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}}$

Electromagnetics

$e=\frac{d}{d t} \psi \quad \psi=N \phi \quad \phi=B A \quad R=\frac{l}{A \mu_{r} \mu_{0}} \quad L=\frac{\psi}{i}$
$N I=R \phi=m m f \quad N \phi=L I \quad L=N^{2} / R \quad W=\frac{1}{2} L i^{2}$

Capacitor and inductor current-voltage relationship

$i_{C}=C \frac{d v_{C}}{d t} \quad v_{L}=L \frac{d i_{L}}{d t}$

