Examination	ENM061 Power Electronic Converters
Date and time	Saturday January 19 ${ }^{\text {th }}, 2019,14: 00-18: 00$
Teacher responsible:	Mebtu Beza/Zeyang Geng, mobile no. +46767655604
Authorised Aids:	Chalmers-approved calculator (Casio FX82..., Texas Instruments Ti-30..., and Sharp EL-W531...)
Grades:	U, 3, 4 or 5. (The limit for a grade of 3, 4 and 5 on the exam are 20, 30, and 40 pts., respectively. The maximum number of points in the exam is 50.)

The questions are not arranged in any kind of order and a formula sheet is attached in the last page.

1) Briefly answer the following questions. (4 pts.)
(a) What do Fourier series coefficients represent in a signal and why do we need to calculate them in the output signals of a switch-mode power converters? (2 pts .)
(b) Plot the Steadystate voltage-current characteristic of a MOSFET and an IGBT and describe the basic different between the two components during conduction? (2 pts.)
2) The flyback converter below has a protective winding (N_{2}) with the total turns ratio of the transformer as $N_{1}: N_{2}: N_{3}=1: 2: 2$ and input voltage $V_{d}=20 \mathrm{~V}$. The switching frequency $f_{s w}=20 \mathrm{kHz}$, the duty cycle $D=0.3$ and the mutual inductance $L_{m}=100 \mu \mathrm{H}$. (8 pts .)
(a) For $R_{\text {load }}=20 \Omega$ and 60Ω, calculate the average output voltage V_{o}. (4 pts.)
(b) For case a, sketch the waveforms for $v_{s w}, i_{d}$ and i_{D}. (2 pts.)
(c) What type of core excitation is used in the flyback converter transformer and is there an air-gap in the core and why? (2 pts.)

3) The isolated 3-winding forward converter with $N_{1}: N_{3}: N_{2}=1: 0.5: 1$ shown below which basically is derived from a buck converter operates with an output voltage (V_{o}) of 15 V and an output power $\left(P_{o}\right)$ of 50 W for an input voltage $\left(V_{d}\right)$ of 25 V and a switching frequency $\left(f_{s w}\right)$ of 20 kHz . (11 pts.)

(a) Calculate the inductance (L) and the mutual inductance $\left(L_{m}\right)$ in order to obtain the peak-to-peak inductor current ripple and magnetizing current ripple to be 10% and 1% of the average output current. (3 pts.)
(b) Plot the inductor and capacitor current waveforms as well as i_{1}, i_{3}, i_{m} and $v_{s w}$ for one switching cycle. Show the important points clearly. (4 pts.)
(c) Calculate the minimum capacitance (C) in order to limit the maximum peak-to-peak output voltage ripple to 1% of the average output voltage. (2 pts.)
(d) What type of core excitation is used in the forward converter transformer and is there an air-gap in the core and why? (2 pts.)
4) For the half-bridge DC/DC converter shown below operating in continuous conduction mode (CCM), (6 pts.)

(a) Roughly sketch the waveforms for $i_{L}, i_{D 1}$ and $i_{D 2}$ for one switching cycle. (2 pts.)
(b) Derive the expression for the output to input voltage ratio $\left(V_{d} / V_{d}\right)$. (2 pts.)
(c) Roughly sketch the magnetizing current waveform and indicate what type of core excitation is used in the transformer. What is the advantage of having this type of core excitation? (2 pts.)
5) For the single-phase inverter shown below with an input voltage $V_{d}=300 \mathrm{~V}$, (10 pts .)

(a) For a square-wave operation, plot the output voltage waveform and calculate the magnitude of the fundamental component as well as the total harmonic distortion. (3 pts.)
(b) For a square wave operation, which order of harmonics is present in the output ac-current? Can you explain what the impact of using a 3-phase inverter on these harmonics is? (3 pts.)
(c) Using the inverter above, how can we improve the low-order harmonic content of the output voltage? (2 pts .)
(d) What are the advantages and disadvantages of using a multilevel inverter instead of a twolevel inverter as shown above? (2 pts.)
6) The thyristor rectifier circuit shown below is connected to the two-phases of a $50 \mathrm{~Hz}, 230 \mathrm{~V}$ (RMS) three-phase voltage sources, $v_{s 1}$ and $v_{s 2}$ with a phase shift of $\mathbf{1 2 0}^{\circ}$. Assume that the source inductance $\left(L_{s}\right)$ is 5 mH and that $I_{d}=10 \mathrm{~A}$ (current-stiff source). For a delay angle (α) of 35°, (11 pts.)
(a) plot $i_{s 1}, i_{s 2}, v_{d}$ and calculate the average value of V_{d}. (5 pts .)
(b) Calculate the average value of V_{d} if the delay angle changes to 145°. (3 pts.)
(c) plot $i_{s 1}, i_{s 2}, v_{d}$ and calculate the average value of V_{d} if the thyristors are changed to diodes and the source inductances are negligible. (3 pts.)

Formula sheet for the final exam of Power Electronic Converters (ENM061)

Fourier calculations

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_{h} and b_{h}
Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$a_{h}=b_{h}=0$ for even h $a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t) \quad$ for odd h
Even quarter-wave	Even and half-wave	$b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \quad$ for odd h $b_{h}=0$ for all h $a_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases}$
Odd quarter-wave	Odd and half-wave	$\begin{aligned} & a_{h}=0 \text { for all } h \\ & b_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$

Definition of RMS-value:

$$
F_{R M S}=\sqrt{\frac{1}{T} \int_{t_{o}}^{t_{o}+T} f(t)^{2} d t}
$$

Definition of RMS-value with Fourier-series:
$F_{R M S}=\sqrt{F_{0}^{2}+\sum_{n=1}^{\infty} F_{n}^{2}}=\sqrt{\left(\frac{a_{0}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{\sqrt{a_{n}^{2}+b_{n}^{2}}}{\sqrt{2}}\right)^{2}}$

Trigonometry

```
\(\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1\)
```

$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \quad \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
$\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \quad \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$
$\sin (\alpha) \sin (\beta)=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)) \quad \sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
$\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta))$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x), \int x \sin (a x) d x=\frac{1}{a^{2}}(\sin (a x)-a x \cos (a x)), \int \cos (a x) d x=\frac{1}{a} \sin (a x)$
$\int x \cos (a x) d x=\frac{1}{a^{2}}(\cos (a x)+a x \sin (a x))$
$P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}, D P F=\cos \phi_{1}, \% T H D_{i}=100 \frac{I_{d i s}}{I_{s 1}}=100 \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}}=100 \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}}$

Electromagnetics

$$
\begin{array}{llll}
e=\frac{d}{d t} \psi & \psi=N \phi & \phi=B A & R=\frac{l}{A \mu_{r} \mu_{0}}
\end{array} \begin{aligned}
& \\
& N I=R \phi=\frac{\Psi}{i} \\
& m m f
\end{aligned} N \phi=L I \quad L=N^{2} / R \quad W=\frac{1}{2} L i^{2}
$$

Capacitor and inductor current-voltage relationship

$i_{C}=C \frac{d v_{C}}{d t} \quad v_{L}=L \frac{d i_{L}}{d t}$

