Midterm Exam	ENM061 Power Electronic Converters Monday November 26, 2018	
Lecturer/Tutor:	Mebtu Beza/Zeyang Geng	
Help:	CTH approved calculator (Casio FX82, Texas TI30, Sharp EL531)	

 The bonus points are awarded as follows.

 0:
 0 - 3.5 pts.

 1:
 4 - 8.5 pts.

 2:
 8 - 11.5 pts.

 3:
 12 - 15.5 pts.

 4:
 16 - 20.0 pts.

1. For the voltage waveform shown in the figure below, calculate the average value, the RMS-value of the fundamental and the total harmonic distortion of the voltage signal. (5 points)

2. For DC/DC converter shown below and operating in CCM mode, derive the expression of the output voltage to input voltage ratio (V_o/V_d) and identify what kind of converter it is. For the boundary condition between CCM and DCM, roughly sketch the waveforms for i_L , i_C and i_o . (5 points)

3. The flyback converter below has a protective winding (N_2) with the total turns ratio of the transformer given by $N_1: N_2: N_3$ (5 points)

For CCM and DCM operation, derive the relationship between the output and input voltage (in terms of switching frequency f_{sw} , duty cycle *D*, mutual inductance L_m and load resistance R_{load}). From the expressions, what is the output voltage when there is no load connected, i.e. $R_{load} = \infty$.

4. The half-bridge DC/DC converter shown below uses a PWM voltage switching (i.e., when $v_{control} \ge v_{tri}$, S1 is on and S2 is off.; when $v_{control} < v_{tri}$, S2 is on and S1 is off). For $\hat{v}_{tri} = V_d = 15V$, $v_{control} = 9V$ and $i_o = 5A$ (5 points)

- (a) Which active components are conducting for the interval $0 \le t \le t_1$ and $t_1 \le t \le t_2$.
- (b) Plot the output voltage waveform v_o and input current waveform i_d for $0 \le t \le t_2$.
- (c) Calculate the average output voltage V_o and the average input current I_d .

Fourier calculations

Symmetry	Condition Required	a_h and b_h
Even	f(-t)=f(t)	$b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$
Odd	f(-t) = -f(t)	$a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$
Half-wave	$f(t) = -f(t + \frac{1}{2}T)$	$a_h = b_h = 0$ for even h
		$a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$ for odd h
		$b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$ for odd h
Even	Even and half-wave	$b_h = 0$ for all h
quarter-wave		$a_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(h\omega t) \ d(\omega t) & \text{for odd } h \end{cases}$
		0 for even h
Odd	Odd and half-wave	$a_h = 0$ for all h
quarter-wave		$b_{t} = \int \frac{4}{\pi} \int_{0}^{\pi/2} f(t) \sin(h\omega t) \ d(\omega t) \text{for odd } h$
		0 for even h

Definition of RMS-value with Fourier-series: $F_{RMS} = \sqrt{F_0^2 + \sum_{n=1}^{\infty} F_n^2} = \sqrt{\left(\frac{a_0}{2}\right)^2 + \sum_{n=1}^{\infty} \left(\frac{\sqrt{a_n^2 + b_n^2}}{\sqrt{2}}\right)^2}$

Trigonometry

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha)\sin(\beta))$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha + \beta))$$

$$\int \sin(\alpha)\cos(\alpha + \beta) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha + \beta)$$

$$\int \sin(\alpha)\cos(\alpha + \beta) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha + \beta)$$

$$\int \sin(\alpha)\cos(\alpha + \beta) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha)$$

$$\int \sin(\alpha)\cos(\alpha + \beta) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha)$$

$$\int \sin(\alpha)\cos(\alpha + \beta) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha)$$

$$\int \sin(\alpha)\cos(\alpha) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha)\cos(\alpha)$$

$$\int \sin(\alpha)\cos(\alpha) = \frac{1}{2}(\cos(\alpha) + \alpha)\sin(\alpha)\cos(\alpha)$$

$$\int \sin(\alpha)\cos(\alpha) = \frac{$$

Electromagnetics

$$e = \frac{d}{dt}\psi \qquad \psi = N\phi \qquad \phi = BA \qquad R = \frac{l}{A\mu_r\mu_0} \qquad \qquad L = \frac{\Psi}{i}$$
$$NI = R\phi = mmf \qquad N\phi = LI \qquad L = N^2/R \qquad \qquad W = \frac{1}{2}Li^2$$

Capacitor and inductor current-voltage relationship

$$i_C = C \frac{dv_C}{dt}$$
 $v_L = L \frac{di_L}{dt}$