Midterm Exam ENM061 Power Electronic Converters
Monday November 26, 2018
Lecturer/Tutor: Mebtu Beza/Zeyang Geng
Help: \quad CTH approved calculator (Casio FX82, Texas TI30, Sharp EL531)

The bonus points are awarded as follows.

0:	$0-3.5 \mathrm{pts}$.
1:	$4-8.5 \mathrm{pts}$.
2:	$8-11.5 \mathrm{pts}$.
3:	$12-15.5 \mathrm{pts}$.
4:	$16-20.0 \mathrm{pts}$.

1. For the voltage waveform shown in the figure below, calculate the average value, the RMS-value of the fundamental and the total harmonic distortion of the voltage signal. (5 points)

2. For DC/DC converter shown below and operating in CCM mode, derive the expression of the output voltage to input voltage ratio $\left(V_{o} / V_{d}\right)$ and identify what kind of converter it is. For the boundary condition between $C C M$ and $D C M$, roughly sketch the waveforms for i_{L}, i_{C} and i_{0}. (5 points)

3. The flyback converter below has a protective winding (N_{2}) with the total turns ratio of the transformer given by $N_{1}: N_{2}: N_{3}$ (5 points)

For CCM and DCM operation, derive the relationship between the output and input voltage (in terms of switching frequency $f_{s w}$, duty cycle D, mutual inductance L_{m} and load resistance $R_{\text {load }}$). From the expressions, what is the output voltage when there is no load connected, i.e. $R_{\text {load }}=\infty$.
4. The half-bridge DC/DC converter shown below uses a PWM voltage switching (i.e., when $v_{\text {control }} \geq v_{\text {tri }}, S 1$ is on and $S 2$ is off.; when $v_{\text {control }}<v_{\text {tri }}, S 2$ is on and $S 1$ is off). For $\widehat{v}_{\text {tri }}=V_{d}=15 \mathrm{~V}, v_{\text {control }}=9 \mathrm{~V}$ and $\boldsymbol{i}_{\boldsymbol{o}}=5 A$ (5 points)

(a) Which active components are conducting for the interval $0 \leq t \leq t_{1}$ and $t_{1} \leq t \leq t_{2}$.
(b) Plot the output voltage waveform v_{o} and input current waveform i_{d} for $0 \leq t \leq t_{2}$.
(c) Calculate the average output voltage V_{o} and the average input current I_{d}.

Formula sheet for the midterm exam of Power Electronic Converters (ENM061)

Fourier calculations

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_{h} and b_{h}
Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$\begin{aligned} & a_{h}=b_{h}=0 \text { for even } h \\ & a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t) \quad \text { for odd } h \\ & b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \text { for odd } h \end{aligned}$
Even quarter-wave	Even and half-wave	$\begin{aligned} & b_{h}=0 \text { for all } h \\ & a_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$
Odd quarter-wave	Odd and half-wave	$\begin{aligned} & a_{h}=0 \text { for all } h \\ & b_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$

Definition of RMS-value with Fourier-series:

$$
F_{R M S}=\sqrt{F_{0}^{2}+\sum_{n=1}^{\infty} F_{n}^{2}}=\sqrt{\left(\frac{a_{0}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{\sqrt{a_{n}^{2}+b_{n}^{2}}}{\sqrt{2}}\right)^{2}}
$$

Trigonometry

$$
\begin{array}{ll}
\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1 & \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) & \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \\
\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) & \sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta)) \\
\sin (\alpha) \sin (\beta)=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)) & \\
\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta)) & \\
\int \sin (a x) d x=-\frac{1}{a} \cos (a x), \int x \sin (a x) d x=\frac{1}{a^{2}}(\sin (a x)-a x \cos (a x)), \int \cos (a x) d x=\frac{1}{a} \sin (a x) \\
\int x \cos (a x) d x=\frac{1}{a^{2}}(\cos (a x)+a x \sin (a x)) \\
P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}, D P F=\cos \phi_{1}, \% T_{i}=100 \frac{I_{d i s}}{I_{s 1}}=100 \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}}=100 \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}}
\end{array}
$$

Electromagnetics

$e=\frac{d}{d t} \psi \quad \psi=N \phi \quad \phi=B A \quad R=\frac{l}{A \mu_{r} \mu_{0}} \quad L=\frac{\Psi}{i}$
$N I=R \phi=m m f$
$N \phi=L I \quad L=N^{2} / R$
$W=\frac{1}{2} L i^{2}$

Capacitor and inductor current-voltage relationship

$i_{C}=C \frac{d v_{C}}{d t}$

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

