Examination	ENM061 Power Electronic Converters
Date and time	Tuesday August $28^{\text {th }}, 2018,14: 00-18: 00$
Teacher responsible:	Mebtu Beza/Zeyang Geng, tel. +46317721617
Authorised Aids:	Chalmers-approved calculator (Casio FX82..., Texas Instruments Ti-30..., and Sharp EL-W531...)
Grades:	U, 3, 4 or 5. (The limit for a grade of 3, 4 and 5 on the exam are 20, 30, and 40 pts., respectively. The maximum number of points in the exam is 50.)

The questions are not arranged in any kind of order and a formula sheet is attached in the last page.
For those of you, who want the result of this exam to be reported to ENM60 (a previous version of the course), please write the course code 'ENM060' on the cover of the exam answer sheet. All others who sit for the ENM061 exam should write the course code 'ENM061' as expected.

1) Briefly answer the following questions. (4 pts.)
(a) What are the characteristic differences between a Thyristor and a MOSFET? (2 pts.)
(b) What is the difference in the transformer core used in a flyback and a forward DC/DC converter? (2 pts.)
2) The backboost converter below operates with an average output voltage (v_{o}) of 12 V and an output power $\left(P_{o}\right)$ of 48 W for an input voltage $\left(V_{d}\right)$ of 18 V and a switching frequency $\left(f_{s w}\right)$ of 20 kHz . (10 pts .)

(a) Calculate the inductance (L) in order to make the converter operate on the boundary between continuous and discontinuous conduction mode. (4 pts.)
(b) Using the result in part (a), plot the inductor and capacitor current waveforms. Show the important points clearly. (2 pts.)
(c) Using the capacitor current plotted in part (b), calculate the minimum capacitance (C) in order to limit the maximum peak-to-peak output voltage ripple to 1% of the average output voltage. (2 pts.)
(d) Roughly sketch the waveforms for the current and the voltage over the switch. (2 pts.)
3) The flyback converter below has a protective winding $\left(N_{2}\right)$ with the total turns ratio of the transformer as $N_{1}: N_{2}: N_{3}=1: 2: 2$ and input voltage $V_{d}=20 \mathrm{~V}$. The switching frequency $f_{s w}=20 \mathrm{kHz}$, the duty cycle $D=0.3$ and the mutual inductance $L_{m}=100 \mu \mathrm{H}$. (10 pts .)
(a) For $R_{\text {load }}=20 \Omega$, calculate the average output voltage V_{o} and sketch the waveforms for $v_{s w}, i_{d}$ and i_{D}. [Hint: you have to first decide if the converter is operating in continuous or discontinuous conduction mode] (4 pts.)
(b) The load resistance can influence the mode of operation of the converter. What is the minimum value of the load resistance $\left(R_{\text {load }}\right)$ for the converter to operate in discontinuous conduction mode? ($\mathbf{3} \mathbf{~ p t s}$.)
(c) What is the minimum load resistance ($R_{\text {load }}$) for the second transformer winding N_{2} to operate to limit the maximum output voltage? (3 pts.)

4) For an isolated full-bridge DC/DC converter shown below operating in continuous conduction mode (CCM), (5 points)

(a) When T_{1} and T_{2} are on and T_{3} and T_{4} are off, what are the values of the voltage over the winding N_{1}, diode D_{1} and diode D_{2} ($\mathbf{3}$ pts.)
(b) Derive the expression for the output to input voltage ratio $\left(V_{d} / V_{d}\right)$. (2 pts.)
5) For the three-phase inverter shown below with an input voltage $V_{d}=300 \mathrm{~V},(9$ points)
(a) For a square-wave operation, roughly plot the neutral-to-ground voltage, the phase-a current $\left(i_{A}\right)$ for a balanced three-phase purely resistive load of 30Ω for one fundamental cycle. (3 pts.)
(b) What is the magnitude of the average dc-side current $\left(I_{\mathrm{d}}\right)$ and which order of harmonics are significant in the dc current i_{d} ? What are the harmonic components if a PWM operation is used instead? ($\mathbf{3} \boldsymbol{p t s}$.)
(c) Calculate the magnitude of the maximum fundamental voltage of $v_{\mathrm{A}(1)}$ in the linear region using PWM operation and the square-wave operation? (3 pts.)

6) For the diode rectifier circuit shown below, $v_{s 1}$ and $v_{s 2}$ are two sinusoidal with a peak value of $\mathbf{2 0 0} \mathrm{V}$, a frequency of 50 Hz and a phase shift of $\mathbf{- 1 5 0}{ }^{\circ}$. Assume that the source inductance (\boldsymbol{L}_{s}) is 5 mH and that $I_{d}=12 \mathrm{~A}$ (current-stiff source). (6 pts .)

(a) plot $v_{s 1}, i_{s 1}, v_{s 2}$, and $i_{s 2} .(3 \mathrm{pts}$.)
(b) plot v_{d} and calculate the average value. (3 pts.)
7) The three-phase thyristor rectifier circuit shown below is used with a current-stiff load with I_{d} $=20 \mathrm{~A}$ and a negligible source inductance. The system operates with a 50 Hz balanced 3 -phase source and the peak value of of the phase voltage is 300 V . For a delay angle of $\mathbf{4 5}^{\boldsymbol{0}}$, [use the attached dot paper in the last page of the exam paper if you prefer] (6 pts.)

(a) Plot the phase-a source voltage and current. What is the input displacement power factor (DPF)? (3 pts.)
(b) Plot the output voltage waveform v_{d} and calculate its average value. (3 pts.)

Formula sheet for the final exam of Power Electronic Converters (ENM061)

Fourier calculations

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_{h} and b_{h}
Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$a_{h}=b_{h}=0$ for even h $a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$ for odd h $b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \quad$ for odd h
Even quarter-wave	Even and half-wave	$\begin{aligned} & b_{h}=0 \text { for all } h \\ & a_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$
Odd quarter-wave	Odd and half-wave	$\begin{aligned} & a_{h}=0 \text { for all } h \\ & b_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$

Definition of RMS-value:

$$
F_{R M S}=\sqrt{\frac{1}{T} \int_{t_{o}}^{t_{o}+T} f(t)^{2} d t}
$$

Definition of RMS-value with Fourier-series:
$F_{R M S}=\sqrt{F_{0}^{2}+\sum_{n=1}^{\infty} F_{n}^{2}}=\sqrt{\left(\frac{a_{0}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{\sqrt{a_{n}^{2}+b_{n}^{2}}}{\sqrt{2}}\right)^{2}}$

Trigonometry

```
\(\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1\)
```

$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \quad \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
$\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \quad \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$
$\sin (\alpha) \sin (\beta)=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)) \quad \sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
$\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta))$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x), \int x \sin (a x) d x=\frac{1}{a^{2}}(\sin (a x)-a x \cos (a x)), \int \cos (a x) d x=\frac{1}{a} \sin (a x)$
$\int x \cos (a x) d x=\frac{1}{a^{2}}(\cos (a x)+a x \sin (a x))$
$P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}, D P F=\cos \phi_{1}, \% T H D_{i}=100 \frac{I_{d i s}}{I_{s 1}}=100 \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}}=100 \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}}$

Electromagnetics

$$
\left.\begin{array}{llll}
e=\frac{d}{d t} \psi & \psi=N \phi & \phi=B A & R=\frac{l}{A \mu_{r} \mu_{0}}
\end{array}\right) L=\frac{\Psi}{i}, ~ W=\frac{1}{2} L i^{2}
$$

Capacitor and inductor current-voltage relationship

$i_{C}=C \frac{d v_{C}}{d t}$
$v_{L}=L \frac{d i_{L}}{d t}$

Dot paper for Question 7 (give a page number and put this paper together with your answer sheets if you use it for your answers. The distance between the dots in the voltage plots is 5°.)

1) Phase-voltage plot for part 7.a.

2) Phase-current plot for part 7.a.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3) Output dc-voltage plot for part 7.b.

