| Midterm Exam    | <b>ENM061 Power Electronic Converters</b><br>Monday November 21, 2016 |  |
|-----------------|-----------------------------------------------------------------------|--|
| Lecturer/Tutor: | Mebtu Beza/Andreas Andersson                                          |  |
| Help:           | CTH approved calculator (Casio FX82, Texas TI30, Sharp EL531)         |  |

The bonus points are awarded as follows.

0: 0 - 9 pts.

2: 10 – 19 pts.

4: 20 - 25 pts.

#### **1.** Briefly answer the following questions.(4 points)

- (a) What is the difference between a diode and a thyristor?
- (b) What is the difference in application between a MOSFET and an IGBT?
- (c) What does an equivalent-series-resistance (ESR) of a capacitor represent and why is it important?
- (d) Explain the purpose of using isolation transformer in power electronic converters.
- 2. For a step-down converter with ideal components shown below, a constant output voltage  $(V_o)$  of 8V is achieved by controlling the duty cycle *D*. The input voltage  $(V_d)$  is 20V, the switching frequency  $(f_{sw})$  is 20 kHz, the inductance (L) is 100 µH, the capacitance (C) is 500 µF and the output power is 50W. (6 points)



- (a) Show that the converter is operating in CCM and calculate the duty cycle, D.
- (b) Calculate the average output and input currents,  $I_o$  and  $I_d$ .
- (c) Plot the capacitor current  $i_c(t)$  and using the current plot calculate the output voltage ripple,  $\Delta v_o$ .
- 3. For a boost converter shown below and operating in CCM mode, derive the expression of the output voltage to input voltage ratio  $(V_o/V_d)$ . Plot the ratio  $(V_o/V_d)$  as a function of the duty cycle (*D*) for the ideal and practical converter and explain the difference. (3 points)



4. The flyback converter below has a protective winding  $(N_2)$  with the total turns ratio of the transformer given by  $N_1: N_2: N_3 = 1: 1: 2$ . (6 points)



- (a) For DCM operation with no current in winding N<sub>2</sub>, derive the relationship between the output and input voltage (in terms of switching frequency  $f_{sw}$ , duty cycle *D*, mutual inductance  $L_m$  and load resistance  $R_{load}$ .
- (b) For DCM operation and no current in winding N<sub>2</sub>, roughly sketch the waveforms for  $v_1$ ,  $i_m$ ,  $i_d$  and  $i_D$ .
- (c) Explain briefly how the winding  $N_2$  limits the maximum output voltage for high value of  $R_{load}$ .
- 5. The full-bridge DC/DC converter shown below uses a PWM bipolar voltage switching (i.e., When  $v_{control} \ge v_{tri}$ , S1 & S3 are on and S2 & S4 are off. When  $v_{control} < v_{tri}$ , S2 & S4 are on and S1 & S3 are off). For  $\hat{V}_{tri} = V_d = 20V$ ,  $v_{control} = 10V$  and  $i_o = I_o = 5A$ , (6 points)



- (a) Plot the output voltage waveform  $v_o$  and input current waveform  $i_d$  for  $t_1 \le t \le t_3$ .
- (b) Calculate the average output voltage  $V_o$  and the average input current  $I_d$ .
- (c) Which active components are conducting for the interval  $t_1 \le t \le t_2$  and  $t_2 \le t \le t_3$ .

# Fourier calculations

| Symmetry     | Condition Required            | $a_h$ and $b_h$                                                                                                                                 |
|--------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Even         | f(-t)=f(t)                    | $b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$                                                                   |
| Odd          | f(-t) = -f(t)                 | $a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$                                                                   |
| Half-wave    | $f(t) = -f(t + \frac{1}{2}T)$ | $a_h = b_h = 0$ for even $h$                                                                                                                    |
|              |                               | $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$ for odd h                                                                   |
|              |                               | $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$ for odd h                                                                   |
| Even         | Even and half-wave            | $b_h = 0$ for all $h$                                                                                                                           |
| quarter-wave |                               | $a_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(h\omega t) \ d(\omega t) & \text{for odd } h \\ 0 & \text{for even } h \end{cases}$ |
| <b></b>      |                               |                                                                                                                                                 |
| Odd          | Odd and half-wave             | $a_h = 0$ for all $h$                                                                                                                           |
| quarter-wave |                               | $b_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \sin(h\omega t) \ d(\omega t) & \text{for odd } h \end{cases}$                           |
|              |                               | 0 for even h                                                                                                                                    |

| Definition of RMS-value: |                                         |
|--------------------------|-----------------------------------------|
| $F_{RMS} = $             | $\frac{1}{T}\int_{t_o}^{t_o+T}f(t)^2dt$ |

Definition of RMS-value with Fourier-series:  

$$F_{RMS} = \sqrt{F_0^2 + \sum_{n=1}^{\infty} F_n^2} = \sqrt{\left(\frac{a_0}{2}\right)^2 + \sum_{n=1}^{\infty} \left(\frac{\sqrt{a_n^2 + b_n^2}}{\sqrt{2}}\right)^2}$$

### Trigonometry

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$
  

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
  

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
  

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
  

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
  

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha)\sin(\beta))$$
  

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$
  

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
  

$$\int \sin(\alpha x)dx = -\frac{1}{\alpha}\cos(\alpha x), \quad \int x\sin(\alpha x)dx = \frac{1}{\alpha^{2}}(\sin(\alpha x) - \alpha x\cos(\alpha x)), \quad \int \cos(\alpha x)dx = \frac{1}{\alpha}\sin(\alpha x)$$
  

$$\int x\cos(\alpha x)dx = \frac{1}{\alpha^{2}}(\cos(\alpha x) + \alpha x\sin(\alpha x))$$
  

$$PF = \frac{P}{S} = \frac{V_{s}I_{s1}\cos\phi_{1}}{V_{s}I_{s}}, \quad DPF = \cos\phi_{1}, \quad \% THD_{i} = 100\frac{I_{dis}}{I_{s1}} = 100\frac{\sqrt{I_{s}^{2} - I_{s1}^{2}}}{I_{s1}} = 100\sqrt{\sum_{h\neq 1}^{N}(\frac{I_{sh}}{I_{s1}})^{2}}$$

## Electromagnetics

$$e = \frac{d}{dt}\psi \qquad \psi = N\phi \qquad \phi = BA \qquad R = \frac{l}{A\mu_r\mu_0} \qquad \qquad L = \frac{\Psi}{i}$$
$$NI = R\phi = mmf \qquad N\phi = LI \qquad L = N^2/R \qquad \qquad W = \frac{1}{2}Li^2$$

# Capacitor and inductor current-voltage relationship

$$i_C = C \frac{dv_C}{dt}$$
  $v_L = L \frac{di_L}{dt}$