Examination

Date and time
Tuesday August $23^{\text {rd }}, 2016,14: 00-18: 00$
Responsible Teacher: Andreas Henriksson, tel. 0709-524924
Authorised Aids: Chalmers-approved calculator (Casio FX82..., Texas Instruments Ti-30... and Sharp EL-W531...)

Grades: $\quad \mathrm{U}, 3,4$ or 5 . (The limit for a 3 on the exam is 20 p , a 4 is 30 p and 5 is 40 p . The maximum number of points is 50 .)

Solutions: Course webpage (Ping-Pong), August 24 ${ }^{\text {th }} 2016$
Review of Exam
ENM060 Power Electronic Converters

September $15^{\text {th }}$ and September 19 ${ }^{\text {th }}$, 12:00-13:00.

Uno Lamms Room. Division of Electric Power Engineering (2 ${ }^{\text {nd }}$ floor).
From September $20^{\text {th }}$ 2016, the exams can be picked-up at the exam office, Department of Energy and Environment.
Location: EDIT building, Maskingränd 2, 3 Ö (east) floor, room 3434A.
Opening hours during semesters: Monday-Friday 12:30-14:30

Observe that the questions are not arranged in any kind of order.
On the last pages there are some formulas that can be used in the examination. Always assume steady-state conditions in all tasks unless otherwise stated.

Please, read through the exam before you start.

1) The voltage curve-form (v_{c}) is applied over the capacitor which are connected to two arbitrary sub-circuits. (3p)

- Explain the concept of steady state.
- Sketch the resulting current that flows into the capacitor (i_{c}).

2) Consider the ideal boost converter below.

- Calculate the peak-to-peak output voltage ripple for the specified operating point.
- Draw the curve form of the voltage ripple. (5p)

3) Consider the Flyback converter below. (5p)

- For the given operating point, check if the converter is operating in CCM or DCM.
- Calculate the resulting temperature of the output diode (D) if the ambient temperature is $30^{\circ} \mathrm{C}$. Application of Simpsons formula must be used for full points.

$$
\begin{gathered}
L_{m}=120 \mu H \\
C=330 \mu F \\
V_{d}=20 V \\
V_{o}=32 V \\
f_{s w}=250 k H z \\
R=4 \Omega \\
\left(N_{1}: N_{2}: N_{3}\right)=(1: 0.5: 1) \\
V_{f}=0.84 V \\
R_{\theta j a}=10^{\circ} \mathrm{C} / W
\end{gathered}
$$

4) The three phase diode rectifier depicted below is used with a voltage stiff DC-link. The system operates with 50 Hz and $v_{a}=v_{b}=v_{c}=230 \mathrm{~V}$ peak voltage. Draw the voltages and currents stated below. Clearly state the amplitudes and phase shifts between the voltages, exact amplitudes of the currents are not needed. (5p)

- The phase voltage in phase $a\left(v_{a n}\right)$
- The line-to-line voltages for phase a ($v_{a b}$ and $v_{a c}$)
- The current in phase $a\left(i_{a}\right)$.
- The DC-side current $\left(i_{d}\right)$.

5) A single-phase diode rectifier with a voltage stiff DC-side (large DC-link capacitor) is connected to a grid with a source inductance. (4p)

- Sketch a typical waveform of the resulting line current (i_{s})
- How will the source inductance affect the power factor (PF) and the displacement power factor (DPF)? Exemplify with e.g. graphs and Fourier components.

6) For a single phase inverter operating in square wave mode, calculate the peak-to-peak ripple in the output current. Assume that the fundamental frequency component of the output voltage is $v_{o(1)}=156 \mathrm{~V}(50 \mathrm{~Hz})$ and that the load consists of an inductor $(L=100 \mathrm{mH})$ in series with a sinusoidally shaped back-emf voltage source $\left(e_{o}=\sqrt{2} \cdot E_{o} \cdot \sin \left(\omega_{1} t\right)\right)$. The back-emf has the same amplitude, frequency and phase shift as the fundamental frequency component of the output voltage. The DC-link voltage $\left(V_{d}\right)$ is 170 V . (5p)

7) A three-phase thyristor inverter is operating with a constant current load ($\left.I_{d}=25 A\right)$. The threephase network is assumed be a balanced system with no line impedance. (4p)

- Draw the voltage waveforms ($v_{\mathrm{Nn}}, v_{\mathrm{Pn}}, v_{\mathrm{d}}$) for $\alpha=150^{\circ}$ on the enclosed dot-paper.
- Draw the current waveforms (i a, $i b, i$) and state the amplitude.

8) For the Thyristor inverter in (7), each component is turned on by applying a pulse on the gate terminal. (3p)

- Is the thyristor a current or voltage controlled device?
- Explain why it could be a problem to operate this inverter with large firing angles (large α), for example 180°.

9) Heat can be transferred by three different mechanisms and it is important to design your application so that it does not become too hot. If a semiconductor becomes too hot and is exposed to extensive thermal cycling, it will eventually break down. (4p)

- Which are the three heat transfer mechanisms and which one is the most important in semiconductors for power electronic applications?
- What is the typical reason for component failure in a semiconductor for power electronic applications?

10) What are the main benefits of using 12-pulse rectification in a three-phase thyristor application (e.g. a HVDC classic)? Exemplify with e.g. input current and output voltage. (4p)

Figure 17-2, page 462
11) A Flyback converter with two secondary windings (i.e. two output voltages v_{01} and v_{02}) is used with real components including parasitic elements. The controller circuit only regulates one output voltage (v_{01}). Explain thoroughly what happens if a load step (e.g. sudden increase/decrease of the output current) is applied on output v_{01} and v_{02}, respectively. (4 p)
12) Compare the transformer utilization for a flyback, forward and a full-bridge. Comment on how the transformer is used in each converter, i.e. advantages/disadvantages. (4p)

	Flyback	Forward	Full-bridge
Transformer utilization			
Comment			

Formulas for Examination in Power Electronic Converters (ENM060)

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_{h} and b_{h}
Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$\begin{aligned} & a_{h}=b_{h}=0 \text { for even } h \\ & a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t) \quad \text { for odd } h \\ & b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \text { for odd } h \end{aligned}$
Even quarter-wave	Even and half-wave	$\begin{aligned} & b_{h}=0 \text { for all } h \\ & a_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$
Odd quarter-wave	Odd and half-wave	$\begin{aligned} & a_{h}=0 \text { for all } h \\ & b_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$

Definition of RMS-value:

$$
F_{R M S}=\sqrt{\frac{1}{T} \int_{t_{o}}^{t_{o}+T} f(t)^{2} d t}
$$

Definition of RMS-value with Fourier-series:

$$
F_{R M S}=\sqrt{F_{0}^{2}+\sum_{n=1}^{\infty} F_{n}^{2}}=\sqrt{\left(\frac{a_{0}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{\sqrt{a_{n}^{2}+b_{n}^{2}}}{\sqrt{2}}\right)^{2}}
$$

$\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1$
$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \quad \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
$\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$
$\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$
$\sin (\alpha) \sin (\beta)=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta))$ $\sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
$\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta))$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x), \int x \sin (a x) d x=\frac{1}{a^{2}}(\sin (a x)-a x \cos (a x)), \int \cos (a x) d x=\frac{1}{a} \sin (a x)$
$\int x \cos (a x) d x=\frac{1}{a^{2}}(\cos (a x)+a x \sin (a x))$
$P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}, D P F=\cos \phi_{1}, \% T H D_{i}=100 \frac{I_{d i s}}{I_{s 1}}=100 \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}}=100 \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}}$

Electromagnetics

$e=\frac{d}{d t} \psi \quad \psi=N \phi \quad \phi=B A \quad R=\frac{l}{A \mu_{r} \mu_{0}} \quad L=\frac{\Psi}{i}$
$N I=R \phi=m m f \quad N \phi=L I \quad L=A_{L} N^{2} \quad W=\frac{1}{2} L I^{2}$

Simpson's rule

Let $f(x)$ be a polynomial of maximum third degree, this means

$$
f(x)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

For this function the integral can be calculated as
$\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(x) d x=\frac{1}{6}\left(f\left(t_{0}\right)+4 f\left(t_{0}+\frac{T}{2}\right)+f\left(t_{0}+T\right)\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

