Examination ENM060 Power Electronic Converters

Date and time \quad Tuesday April $5^{\text {th }}, 2016,14: 00-18: 00$
Responsible Teacher: Andreas Henriksson, tel. 0709-524924
Authorised Aids: Chalmers-approved calculator (Casio FX82..., Texas Instruments Ti-30... and Sharp EL-W531...)

Grades: U, 3, 4 or 5 . (The limit for a 3 on the exam is 20 p , a 4 is 30 p and 5 is 40 p . The maximum number of points is 50 .)

Solutions: \quad Course webpage (Ping-Pong), April 6 $6^{\text {th }} 2016$
Review of Exam \quad May $2^{\text {nd }}$ and May 4 ${ }^{\text {th }}$, 12:00-13:00.
Fredrik Lamms Room. Division of Electric Power Engineering (1 $1^{\text {st }}$ floor).
From May $5^{\text {th }} 2016$, the exams can be picked-up at the exam office, Department of Energy and Environment.
Location: EDIT building, Maskingränd 2, 3 Ö (east) floor, room 3434A.
Opening hours during semesters: Monday-Friday 12:30-14:30

Observe that the questions are not arranged in any kind of order.
On the last pages there are some formulas that can be used in the examination. Always assume steady-state conditions in all tasks unless otherwise stated.

Please, read through the exam before you start.

1) For the circuit below with $T=30 \mu s$ and $D=0.6$, sketch the resulting voltage and calculate the inductance needed if the voltage applied over the inductor during $0<t<D T$ is 12 V . (3p)

2) For the buck/boost converter below, derive an expression for the ratio between the input and output voltage if the converter is operating in CCM. (3p)

3) The buck/boost converter in (2) is used with the circuit parameters and operating conditions below. Draw the resulting capacitor current (ic), apply Simpsons formula and calculate the maximum power dissipation in the output capacitor if $R_{E S R}=45 m \Omega$. (5p)

$$
V_{d}=20 \mathrm{~V} \quad V_{o}=30 \mathrm{~V} \quad L=40 \mu H \quad f_{s}=80 \mathrm{kHz} \quad C_{o}=330 \mu F \quad I_{o}=1 \mathrm{~A} \text { to } 7 \mathrm{~A}
$$

4) For the buck/boost converter in (2), calculate the lowest value of the inductance (L) required to keep the converter operation in continuous conduction mode (CCM) for the entire operating region. (4p)
5) The single-phase diode rectifier shown below is connected to an AC-voltage of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ with a negligible inductance (source inductance). A DC-side inductance (L) is connected between the rectifier output and the filter capacitor (C). The DC-side inductance can not be considered infinite $(\mathrm{L}=10 \mathrm{mH})$ but the filter capacitor can be assumed to be very large. Calculate the output voltage for a continuous inductor current (iL). (3p)

6) For the diode rectifier in (5), the current that flows through the DC-side inductance (i_{L}) will consist of a DC-component and a superimposed AC-component. Draw the waveforms of $v_{r}(t)$, $v_{0}(t)$ and $i_{L}(t)$ at the limit which $i_{L}(t)$ becomes discontinuous. No calculations are needed, just typical waveforms. (3p)
7) For the diode rectifier in (5), the current that flows through the DC-side inductance (i_{L}) will consist of a DC-component and a superimposed AC-component. As the load resistance decreases or increases, the current can be either continuous or discontinuous. Calculate the load resistance value (Rload) at the limit below which $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ becomes discontinuous. (5p)
8) The three phase inverter below is operated in square wave mode and the fundamental frequency component of the AC-side voltage is 50 Hz . Plot the phase potentials of each leg ($v_{A N}, v_{B N}, v_{C N}$), the phase voltage over the load ($v_{A n}$) and the resulting line to line voltage ($v_{A B}$). (4p)

9) The three-phase inverter in (8) is loaded with a purely resistive load ($R_{A}=R_{A}=R_{A}=5 \Omega$) and with $V_{d}=340 \mathrm{~V}$. Determine the RMS-value of the fundamental component of the phase current (iA). (4p)
10) The load is replaced with an inductance and a voltage source (back-EMF) instead. The voltage from the back-EMF is sinusoidal shaped and in phase with the fundamental frequency output voltage which gives a resulting current as depicted below. For one leg and one period, sketch the phase voltage ($v_{A n}$) and the back-EMF. Also, draw the current through phase leg A and the current through each diode $\left(D_{A 1}, D_{A 2}\right)$ and each valve $\left(T_{A 1}, T_{A 2}\right)$ (5p)

11) You replace the standard 2-level inverter in (8) with a 3-level neutral point diode clamped (NPC) inverter instead, see phase leg below. Draw the resulting mid-point voltages ($v_{A G N D}, v_{B G N D}, v_{C G N D}$) and the resulting voltage ($v_{A n}$) that is applied over a y-connected load (phase voltage) for the 3 -level inverter. Assume that upper and lower part of the phase leg (T_{1}, T_{2} or T_{3}, T_{4}) is turned on for 150° and that the midpoint switches (T_{2}, T_{3}) are turned on for 30°. What is the benefit of using a multi-level inverter? (4p)

$$
v_{A n}=\frac{2}{3} v_{A G N D}-\frac{1}{3}\left(v_{B G N D}+v_{C G N D}\right)
$$

12) For the component below, calculate the resulting chip temperature if the component is mounted on a heat sink with $R_{\text {gSA }}=12.3 K / W$, the power dissipation is 3.4 W and the ambient temperature is $\boldsymbol{T}_{A}=25^{\circ} \mathrm{C}$. If the component is used in an environment where it is exposed to many thermal cycles it will eventually break down. Due to which mechanism will it break down? (3p)

TO-220

13) In the diagram below, state which component that is typically used in each power range. Why can't high power components be used with a high switching frequency? (4p)

Formulas for Examination in Power Electronic Converters (ENM060)

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_{h} and b_{h}
Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$\begin{aligned} & a_{h}=b_{h}=0 \text { for even } h \\ & a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t) \text { for odd } h \end{aligned}$
Even quarter-wave	Even and half-wave	$b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \quad$ for odd h $b_{h}=0$ for all h $a_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases}$
Odd quarter-wave	Odd and half-wave	$\begin{aligned} & a_{h}=0 \text { for all } h \\ & b_{h}= \begin{cases}\frac{4}{\pi} \int_{0}^{\pi / 2} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\ 0 & \text { for even } h\end{cases} \end{aligned}$

Definition of RMS-value:

$$
F_{R M S}=\sqrt{\frac{1}{T} \int_{t_{o}}^{t_{o}+T} f(t)^{2} d t}
$$

Definition of RMS-value with Fourier-series:

$$
F_{R M S}=\sqrt{F_{0}^{2}+\sum_{n=1}^{\infty} F_{n}^{2}}=\sqrt{\left(\frac{a_{0}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{\sqrt{a_{n}^{2}+b_{n}^{2}}}{\sqrt{2}}\right)^{2}}
$$

$\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1$
$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \quad \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
$\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$
$\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$
$\sin (\alpha) \sin (\beta)=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta))$ $\sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
$\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta))$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x), \int x \sin (a x) d x=\frac{1}{a^{2}}(\sin (a x)-a x \cos (a x)), \int \cos (a x) d x=\frac{1}{a} \sin (a x)$
$\int x \cos (a x) d x=\frac{1}{a^{2}}(\cos (a x)+a x \sin (a x))$
$P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}, D P F=\cos \phi_{1}, \% T H D_{i}=100 \frac{I_{\text {dis }}}{I_{s 1}}=100 \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}}=100 \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}}$

Electromagnetics

$e=\frac{d}{d t} \psi \quad \psi=N \phi \quad \phi=B A \quad R=\frac{l}{A \mu_{r} \mu_{0}} \quad L=\frac{\Psi}{i}$
$N I=R \phi=m m f \quad N \phi=L I \quad L=A_{L} N^{2} \quad W=\frac{1}{2} L I^{2}$

Simpson's rule

Let $f(x)$ be a polynomial of maximum third degree, this means

$$
f(x)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

For this function the integral can be calculated as
$\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(x) d x=\frac{1}{6}\left(f\left(t_{0}\right)+4 f\left(t_{0}+\frac{T}{2}\right)+f\left(t_{0}+T\right)\right)$

