| <b>ENM060 Power Electronic Converters - Solutions</b><br>Monday November 23, 2015 |
|-----------------------------------------------------------------------------------|
| Andreas Henriksson, 0709-524924                                                   |
| CTH approved calculator (Casio FX82, Texas TI30, Sharp EL531)                     |
| Will be posted on the course webpage (2015-11-24).                                |
| Handed out 2015-12-02 at 15:15 in ML11                                            |
| Handed out 2015-12-02 at 15:15 in ML11                                            |
|                                                                                   |

Each question is connected to a lecture (1 to 8). The bonus points are rewarded as follows:-2p:0-4p+1p:5-14p+2p:15-19p+3p:20-25p

- 1. Explain the difference between power factor (PF) and displacement power factor (DPF). (4p)
- 2. Compare the switching of and IGBT and an MOSFET. Exemplify with e.g. currents and/or voltages curve forms, drive circuits and component design. (3p)
- **3.** Name two upcoming technologies that can replace silicon (Si) as a semiconductor material in power electronic switches in the future. (2p)
- 4. Draw an equivalent circuit model for a capacitor and explain what each circuit element represents. (3p)
- 5. For a boost converter, derive an expression of the ratio between the input and output voltage when it is operating in continuous conduction mode (CCM). (3p)
- 6. For the buck/boost converter below, apply Kirchhoff's current law on the node below and draw the three current flowing in/out of the node when it is operating in DCM. Also, draw the resulting voltage ripple. (4p)



7. The flyback converter below has a protective winding  $(N_2)$  and the total turns ratio of the transformer  $(N_1: N_2: N_3)$  is (1: 1: 1). If the converter is operating in CCM, derive an expression of how the average magnetizing current  $(I_m)$  relates to the average output current  $(I_0)$ . (3p)



8. Assume that the forward converter below is operating in CCM with D=0.3 and that all windings on the transformer have the same number of turns  $(N_1: N_2: N_3 = 1: 1: 1)$ . Draw the resulting voltage over the switch  $(v_{sw})$  and the current that flows through diode  $D_3$ . (3p)



| Formulas for Examination in P | wer Electronic Converters (ENM060) |
|-------------------------------|------------------------------------|
|-------------------------------|------------------------------------|

| Symmetry     | Condition Required                                     | $a_h$ and $b_h$                                                                                                           |
|--------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Even         | f(-t)=f(t)                                             | $b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$                                             |
| Odd          | f(-t) = -f(t)                                          | $a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$                                             |
| Half-wave    | $f(t) = -f(t + \frac{1}{2}T)$                          | $a_h = b_h = 0$ for even $h$                                                                                              |
|              |                                                        | $a_{h} = \frac{2}{\pi} \int_{0}^{\pi} f(t) \cos(h\omega t) d(\omega t) \text{ for odd } h$                                |
|              |                                                        | $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$ for odd h                                             |
| Even         | Even and half-wave                                     | $b_h = 0$ for all $h$                                                                                                     |
| quarter-wave |                                                        | $a_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(h\omega t) \ d(\omega t) & \text{for odd } h \end{cases}$     |
|              | $\begin{bmatrix} 0 & \text{for even } h \end{bmatrix}$ |                                                                                                                           |
| Odd          | Odd and half-wave                                      | $a_h = 0$ for all $h$                                                                                                     |
| quarter-wave | e                                                      | $b_{h} = \begin{cases} \frac{4}{\pi} \int_{0}^{\pi/2} f(t) \sin(h\omega t) \ d(\omega t) & \text{for odd } h \end{cases}$ |
|              | 0 for even $h$                                         |                                                                                                                           |



$$F_{RMS} = \sqrt{F_0^2 + \sum_{n=1}^{\infty} F_n^2} = \sqrt{\left(\frac{a_0}{2}\right)^2 + \sum_{n=1}^{\infty} \left(\frac{\sqrt{a_n^2 + b_n^2}}{\sqrt{2}}\right)^2}$$

$$\begin{aligned} \sin^{2}(\alpha) + \cos^{2}(\alpha) &= 1 \\ \sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\ \cos(\alpha + \beta) &= \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \\ \sin(\alpha)\sin(\beta) &= \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)) \\ \sin(\alpha)\sin(\beta) &= \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)) \\ \sin(\alpha)\cos(\beta) &= \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta)) \\ \cos(\alpha)\cos(\beta) &= \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta)) \\ \int \sin(ax)dx &= -\frac{1}{a}\cos(ax), \int x\sin(ax)dx = \frac{1}{a^{2}}(\sin(ax) - ax\cos(ax)), \int \cos(ax)dx = \frac{1}{a}\sin(ax) \\ \int x\cos(ax)dx &= \frac{1}{a^{2}}(\cos(ax) + ax\sin(ax)) \\ PF &= \frac{P}{S} &= \frac{V_{s}I_{s1}\cos\phi_{1}}{V_{s}I_{s}}, DPF = \cos\phi_{1}, \ \% THD_{i} = 100\frac{I_{dis}}{I_{s1}} = 100\frac{\sqrt{I_{s}^{2} - I_{s1}^{2}}}{I_{s1}} = 100\sqrt{\sum_{h\neq 1}^{2}\left(\frac{I_{sh}}{I_{s1}}\right)^{2}} \end{aligned}$$

## Electromagnetics

$$e = \frac{d}{dt}\psi \qquad \psi = N\phi \qquad \phi = BA \qquad R = \frac{l}{A\mu_{r}\mu_{0}} \qquad L = \frac{\Psi}{i}$$
$$NI = R\phi = mmf \qquad N\phi = LI \qquad L = A_{L}N^{2} \qquad W = \frac{1}{2}LI^{2}$$

## Simpson's rule

Let f(x) be a polynomial of maximum third degree, this means  $f(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$ 

For this function the integral can be calculated as

$$\frac{1}{T}\int_{t_0}^{t_0+T} f(x)dx = \frac{1}{6}\left(f(t_0) + 4f(t_0 + \frac{T}{2}) + f(t_0 + T)\right)$$