SVAR TIL Tentamen i

Elektriska kretsar och Signaler del B, EMI190 (D2)

Signaler \& System, ESS050 (Z2)

17 augusti 2000

1. a) Laplace transform the equation, and partial fraction expansion, leads to

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{2}{s}+\frac{4}{s+2}
$$

so that $h(t)=\left(2+4 e^{-2 t}\right) u(t)$.
b) Applying the sifting property $\left(\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d t=x(t)\right)$ of the dirac delta function, and the fact that the system is LTI, signal out is given in the figure below.

2. Take the Laplace transform (table!) of signals $x_{1}(t)$ and $y_{1}(t)$. Computing the ratio of $Y_{1}(s)$ and $X_{1}(s)$ gives the unknown transfer function, i.e. $X_{1}(s)=\frac{1}{s+1}$, and $Y_{1}(s)=$ $\frac{-4}{(s+2)^{2}}-\frac{1}{s+2}=\frac{-(s+6)}{(s+2)^{2}}$. Taking the ratio leads to

$$
H(s)=\frac{Y_{1}(s)}{X_{1}(s)}=\frac{-(s+6)(s+1)}{(s+2)^{2}}
$$

Now, we can easily find $Y_{2}(s)=H(s) X_{2}(s)=\frac{-(s+1)}{(s+2)^{2}}$, where $X_{2}(s)=\frac{3}{s+6}$ (from table). Finally, take the inverse Laplace transform of $Y_{2}(s)$, together with a partial fraction expansion, to get the answer $y_{2}(t)=3 t e^{-2 t} u(t)-3 e^{-2 t} u(t)$.
3. a)
b)
4. a) Sampling-frequency $f_{s}=2 \cdot 37.8 \mathrm{kHz}$, according to the sampling theorem. Use for instance $f_{s}=100 \mathrm{kHz}$.
b) The number of samples must be sufficiently large so that the frequency resolution is better than $(37.8-37.6) / 2=0.1 \mathrm{kHz}$. We include the factor of 2 so that we get at least one sample between the two expected peaks (since the purpose is to separate the two peaks).Using N samples, the frequency resolution is $100 \mathrm{kHz} / \mathrm{N}$. So use $N=100 / 0.1=1000$ samples. (Note that performing this in e.g. Matlab, the samples will be zero-padded to $2^{1} 0=1024$, in order for the FFT algorithm to be computationally efficient.)

5. a)

Since the spectrum of the signal $x_{+}(t)$ is non-symmetric around zero, we conclude that $x_{+}(t)$ must be a complex signal (the operation carried out by the filter $\Phi(f)$ is referred to as a Hilbert transform).
b) The multipliction by the pulse train results in repeated spectra every $n \frac{1}{T_{1}}=10 \mathrm{kHz}$ (corresponding to $F=1$ in relative frequency). With a bandwidth of $B=3000 \mathrm{~Hz}$, we get a relative bandwidth of $B_{F}=3000 / 10000=0.3$ in relative frequency. Since the bandwidth of the filter is less than this, part of the signal will be destroyed passing through the filter; It will consequenty be impossible to reconstruct the original signal $x_{c}(t)$ from $y[n]$. The spectrum of $y[n]$ is shown in the figure, with the spectrum of $x[n]$ shown as dotted lines.

c) Any sampling process results in repeated spectra every $1 / T_{s}$, where T_{s} is the sampling interval. Thus, if we use $T_{2}=0.10 \mathrm{~ms}$, the result will be identical (apart from a simple amplitude scaling) to that obtained above.

