
2014-10-31

Written exam in EDA387/DIT663 Computer Networks 2014-10-31. Exam time: 4 hours.

Means allowed: Nothing except paper, pencil, pen and English - xx dictionary.

Examiner: Elad Michael Schiller, phone: 073-6439754 
Note that student questions can be answered only by phone.  

Credits:         30-38 39-47 48-Max
Grade:             3   4 5
Grade (GU)     G        G      VG

1. The answer must be written in English (even for Swedish students). Use proper grammar and
punctuation.

2. All answers need to be motivated, unless otherwise stated. Correct answers without motivation or
with wrong motivation will not be given full credit.

3. Answer concisely, but explain all reasoning. Draw figures and diagrams when appropriate.
4. Write clearly. Unreadable or hard-to-read handwriting will not be given any credit. 
5. Do not use red ink.
6. Solve only one problem per page.
7. Sort and number pages by ascending problem order.
8. Anything written on the back of the pages will be ignored.
9. Do  not  hand  in  empty  pages  or  multiple  solutions  to  the  same  problem.  Clearly  cross  out

anything written that is not part of the solution. 

Page 1 out of 7 pages



Question 1 DNS (8 points)

Please  answer  each  of  the  sub-questions  given  below  separately  and  by  using  DNS-terminology  and
concepts.

1a. (4p) Mention and describe the meaning and contents of at least four commonly used Resource Records
(name, type, value) in the DNS database.

ANSWER: Please refer to the DNS-lecture slide 17-18 and the course books.

The following is short explanation of some DNS Resource Records.

MX: Mail eXchanger, the given name is domain name and the returned value is hostname of mail server
associated with domain name.

NS: Name Server, the given name is  domain name and the value is  hostname of authoritative name
server responsible for this domain.

A: Address for IPv4, the given name is hostname and the returned value is IPv4 Address

CNAME: Canonical NAME, the given name is alias name and the returned value is the canonical (real)
name. 

AAAA: Address for IPv6, the given name is hostname and the returned value is IPv6 Address

1b. (4p) Suppose that you are using the Chalmers network to connect your laptop to the Internet. Suppose
also that you want to access the web site www.tue.nl for the first time. Explain how and why DNS will be
involved immediately after entering the name of the site in your browser. Assume that there is  no cached
DNS-information (about  this  site),  anywhere in  Chalmers  network.  The answer should,  specifically  and
technically, explain the necessary operation, including:

-  the interaction and communication between the different DNS resolvers and servers,
-  the protocols and messages used, and
-  the final outcome.

ANSWER: Please refer to the DNS-lecture slides 20-21 and the course books.

The following is short answer:
- The web browser needs the IP address of the server before initializing the TCP connection with the web
server. Initial contact begins with local name server at Chalmers (host can learn address of DNS server from
DHCP). The DNS-client starts with sending DNS-query to the local server in order to recursively resolve the
hostname www.tue.nl into IP address. (1) The local server queries a root-server to find nl TLD servers. (2)
The  local  server  queries  nl  TLD-server  to  find  tue.nl  auth.  Servers.  (3)  The  local  server  queries  one
authoritative DNS-server to get IP address(es) for www.tue.nl.

Page 2 out of 7 pages

http://www.tue.nl/
http://www.tue.nl/


Local server caches answers (owner specifies cache timeout by including TTL in answer). The local server
will reply to the DNS client by sending the answer including the IP address(es) of the server of the site. 

DNS query and reply messages are transported in UDP segments.

Question 2 IPv6 Addresses (6 points) 

These three addresses are given with IPv6 representation:

(i) 2001:6b0:2:10::1 
(ii) FF02::1:ff6c:14dd           
(iii) FE80::20c:f1ff:fe6c:14dd  
                 
Please answer the following sub-questions in relation to the above addresses.

2a. (1p) Decompress and rewrite each of the given addresses showing all hexadecimal digits. 

(i) 2001:06b0:0002:0010:0000:0000:0000:0001 
(ii) FF02:0000:0000:0000:0000:0001:ff6c:14dd           
(iii) FE80:0000:0000:0000:020c:f1ff:fe6c:14dd  

2b. (2p) What is the "type" of each of these IPv6 addresses? Explain what each type does imply.   

(i) 2001:6b0:2:10::1 UNICAST
(ii) FF02::1:ff6c:14dd           MULTICAST
(iii) FE80::20c:f1ff:fe6c:14dd  UNICAST

2c. (1p) Which of the given addresses cannot be used as valid source address in IPv6 packet? Explain why?

(ii) FF02::1:ff6c:14dd           MULTICAST (group or set of interfaces, used 
only as destination address)

2d. (2p) What is the "scope" of each of these IPv6 addresses? Explain what each scope does imply.

(i) 2001:6b0:2:10::1 GLOBAL
(ii) FF02::1:ff6c:14dd    LINK-LOCAL       
(iii) FE80::20c:f1ff:fe6c:14dd  LINK-LOCAL       

IPv6 addresses are identifiers that are assigned to interfaces and sets of interfaces. The scope identifies the 
location of the receiver(s) of the IPv6 packets. It specifies in which part of the network the address is valid 
and where the packets are allowed or not to be routed to the destination. The scope is recognized by the 
prefix of the address and  it can be local or global. 

           

Page 3 out of 7 pages



Question 3 ICMPv6 (8 points) 

3a. (2p) What is the main purpose of IPv6 Neighbor Discovery? Explain clearly the operation.

3b. (2p) What are the messages deployed in IPv6 Neighbor Discovery? Explain how these messages will be 
encapsulated and addressed in layer-2 and layer-3 PDUs (i.e. packets and frames).

Short answer for (3a) and (3b):

The main purpose of IPv6 Neigbour Discovery is to obtain the link-layer address of a neighbour, using 
ICMPv6 neighbour solicitation and neighbour advertisement messages sent in IPv6 packets with multicast to
the solicited-node. 

For complete answer please refer to slides 44-45 in IPv6 handouts.

3c. (4p) What is the purpose of sending the message "Router Advertisement"? What are the most important 
parts of information does it contain? Explain at least three and how they are useful for IPv6 nodes.

Short explanation:

The stateless autoconfiguration of IPv6 nodes includes automatic configuration of unicast link-local and 
global addresses using 64 bits interface identifier. A node can use the unicast link-local IPv6 addresses to 
send ICMPv6 router solicitation message to get prefix information in an ICMPv6 router advertisement 
message from the local router. The prefix information can then be used node to automatically configure its 
global address.

For complete answer please refer to the slides 47-49 in IPv6 handouts.
               

Question 4 (6 points) Socket API: select()

Each of the following parts of a program contains a flaw. Identify and describe the flaw in a few short 
sentences or points. You do not have to correct the flaw; you should just find and describe it! (Note: you're 
not looking for, e.g., syntax errors. Find conceptual flaws in the program.)
Hint: The program uses select() and they are supposed to be non-blocking. Consider which operations 
can actually block the processes that execute these programs.
The following program accepts new connections using the listenfd socket. The first byte sent by a client 
is expected to be an 8 bit ID.

 You may assume that the handle_*_error() methods do something sensible.
 The helper method register_client(client, id) verifies the client ID is acceptable and if that is

the case, enters the client into a global list. Otherwise it closes the connection.
 The method add_client_sockets_to_readfds() properly adds all active clients in the global list 

to the readfds. It returns the largest socket number it encounters.
 handle_registered_clients() handles clients that are ready to send data according to readfds, 

and removes clients that close their associated connections from the global list. No data is ever sent 
to the clients, the program only receives and processes data sent to it. 

  /* includes, declarations, etc. */
int main() {

int listenfd = -1; 

Page 4 out of 7 pages



                  /* initialization code, such as setting up a listening socket on listenfd, has been omitted – 
this is not the error you’re looking for */            

while( 1 ) {
fd_set readfds; // initialize read set
FD_ZERO( &readfds );
int maxfd = add_client_sockets_to_readfds( &readfds );
FD_SET( listenfd, &readfds );
if( listenfd > maxfd ) maxfd = listenfd;
int ret = select( maxfd+1, &readfds, 0, 0, 0 ); // call select
if( -1 == ret ) handle_select_error();
// is there a new client waiting?
if( FD_ISSET( listenfd, &readfds ) ) {

sockaddr_in clientAddr;
socklen_t clientAddrLen = sizeof(clientAddr);
int client = accept( listenfd,

(sockaddr*)&clientAddr,
&clientAddrLen

);
if( -1 == client ) handle_accept_error();
// receive 8bit client ID
unsigned char id;
int ret = recv( client, &id, sizeof(id), 0 );
if( 0 == ret ) {

close( client );
continue;

}
if( -1 == ret ) handle_recv_error();
// register client
register_client( client, id );

}
handle_registered_clients(&readfds);//handle registered clients

}
return 0;

}

Question 5 (8 points)

We learned in class a self-stabilizing algorithm for BFS spanning tree construction, see the code below. 
Explain how transient faults can cause the system to output an error. We define a floating distance in 
configuration c, as a value stored in rij.dis that is smaller than the distance of pi from the root, where dis is 
the distance field of the registers.

Prove that for every k > 0 and for every
configuration that follows  + 4k rounds, it
holds that: 

 If there exists a floating distance,
then the value of the smallest
floating distance is at least k.

 The value in the registers of every
processor that is within distance k
from the root is equal to its distance
from the root.

Page 5 out of 7 pages



Proof. Note that in every 2 successive rounds, each processor reads the registers of all its neighbors and 
writes to each of its registers. We prove the lemma by (1) induction over k. 

Base Case: Proof for k=1. Distances stored in the registers and internal variables are non-negative; thus the
value of the smallest floating distance is at least 0 in the first configuration. During the first 2 rounds, each 
non-root processor pi, computes the value of the variable dist (line 7). The result of each such computation 
must be (2) greater than or equal to 1. Let c2 be the configuration reached following the first computation of 
the value of dist by each processor. 

Each non-root processor writes to each of its registers the computed value of dist during the 2 rounds that 
follow c2. Thus, in every configuration that follows the first 4 rounds there is no non-root processor with 
value 0 in its registers. The above proves (3) assertion 1. 
To prove (4) assertion 2, note that the root repeatedly writes the (5) distance 0 to its registers in every (6)  
rounds. Let c1 be the configuration reached after these (7)  rounds. Each processor reads the registers of the 
root and then writes to its own registers during the 4 rounds that follow (8) c1. In this write operation the 
processor assigns (9) 1 to its own registers. Any further read of the root registers returns the value (10) 0; 
therefore, the value of the registers of each neighbor of the root is (11.1) 1 following the first  + 4 rounds. 
Thus, (11.2) assertion 2 holds as well. 

Induction Step. We assume correctness for (12) k ≥ 0 and prove for k + 1. Let m≥k be the smallest floating 
distance in the configuration c4k that follows the first  + 4k rounds. During the 4 rounds that follow c4k, 
each processor that reads m and chooses m as the smallest value assigns (13) m +   1   to its distance and writes 
this value. Therefore, the smallest floating distance value is m + 1 in the configuration c4(k+1). This proves (14) 

assertion 1. 

Since the smallest floating distance is (15) m   ≥   (or  >  )   k, it is clear that each processor reads the distance of a 
neighboring processor of distance k and assigns (16) k +   1   to its distance. ■ 

Question 6 (4 points)

6.a (1 p) The set of legal executions, LE, includes all executions in which the system behaves according to 
the required properties (and no other execution). Use the notation LE to define the term safe configuration.
We say that configuration c is safe if every exaction R (run) that starts from c is a legal execution, i.e., R is 
in LE.
 
6.b (3 p) We learned in class a non-stabilizing algorithm for synchronous consensus, see the code below. 
Explain how transient faults can cause the system to output an error.   

Page 6 out of 7 pages



For example, any execution that starts in a system configuration in which the value of at least one output 
variable is 1, the program counter of every processor is greater than 3, and in which there exists no input 
variable with the value 1 never reaches a safe configuration. The reason is that no processor assigns 0 to the 
output variable following the execution of line 3 of the code. 

Question 7 (6 points)

Please find below a self-stabilizing algorithm for leader election, where N is an upper bound on the number 
of processors in the system. 
7.a (2 p) Please define the safe configuration of the algorithm. Make sure that you consider all variables and 
shared registers.

For all pi in P, leaderi = min({ID(j)}: pj in P)
The variables disi encodes a BFS tree that is rooted at leaderi. 
The variables leaderi[] and disi[] refer to the respective neighbours values.
The variables candidate and distance are not part of the processor state because they constructed and 
initiated at the start of the loop and destroyed at its end.    

7.b (4 p). Suppose the system execution, R, starts in a safe configuration, c. Let ai be a step that processor pi  

takes immediately after c and just before c’. Please show that c’ is safe.   
  

Page 7 out of 7 pages



Question 8 (8 points)

We learned in class several algorithms for self-stabilizing clock synchronization. Please find below the code 
of a couple of them, which we call: converge-to-the-min and -max.

8.a (2 p) What do the constants d and n stand for?
We denote by d the network diameter and by n the number of nodes in the networks.

8.b (1 p) Please compare these two algorithms with respect to their scalability property. Which one scales 
better? Why? 

The converge-to-the-min algorithm does not depend on the number of nodes in the system. Since in practice 
the network diameter grows much slower than the number of nodes, the same number of bits use for the 
clock counter in the converge-to-the-min algorithm would be good for a much larger network than the 
converge-to-the-max. 

8.c (1 p) Please compare these two algorithms with respect to the service provided to the application layer. 
Which one is easier to work with? Why? 

The disadvantage that converge-to-the-min algorithm has over the converge-to-the-max algorithm is that 
during convergence, the clock will adjust backwards. That can be very confusing for the program at the 
application layer (or any other layer).  

8.d (4 p) Please complete the correctness proof of the algorithm converge-to-the-min

Suppose that no processor (1) has a clock the warps around to the zero value during the first (2) d pulses. Then 
we can use simple (3) induction arguments (as used for the unbounded clock synchronization algorithm) to 
show that synchronization is achieved. Otherwise, a processor (4) there is at least one processor that its clock 
value warps around to the zero value and assigns zero to it during the first (5) d pulses. Therefore, (6) d pulses 
after this point a configuration c is reached, such that there is no clock value greater than (7) d : the first (8) 

case holds.

Page 8 out of 7 pages



Page 9 out of 7 pages



Question 9 (6 points)

9.a (2 p) Define the task of wait-free self-stabilizing clock synchronization. Given a fixed integer k, once a 
processor pi works correctly for at least k time units and continues working correctly, the following 
properties hold:

 Adjustment: pi does not (1) does not adjust its clock.
 Agreement: pi’s clock (2) agrees with the clock of (3)  every other processor that has also (4)  been 

working correctly for at least k time units.

9.b (4 p) We learned in class an algorithm for wait-free self-stabilizing clock synchronization for the fully 
connected graph, please find below its code. Each processor P has the following two variables: (1) P.clock 
{0… M-1} and (2)  Q : P.count[Q]  {0,1,2}. We say that processor P is behind Q if P.count[Q]+1 (mod
3) = Q.count[P]. 

Suppose the processor P executes more than
k=2 successive steps. Show that the set NB,
which is R in the code to the right, is not empty
following P’s first step.

The reason is that pi executes a step in which it
increments every order variable orderij such
that pj is not behind pi. 

Page 10 out of 7 pages



Question 10 (8 points)

10.a (2 p) Define the task of vertex coloring. 

The coloring task is to assign a color value to each processor, such that no two neighboring processors are 
assigned the same color. Your answer may also include: Minimization of the colors number is not required. 
The algorithm uses Δ+1colors, where Δ is an upper bound on a processor’s number of neighbors. [Dolev 
2000] Chapter 7 - Local Stabilization, slide 9.

10.b (2 p) Please find below one of the self-stabilizing algorithms for vertex coloring that we learned in 
class. How long does it takes for the algorithm to convergence. Please give an example for a particularly 
long convergence period.
In the order of the network diameter [Dolev 2000] Chapter 7 - Local Stabilization, slide 14.

10.c (4 p) Does this algorithm guarantee the shortest convergence possible? In case you think that it is, then 
please give a formal proof for a matching lower bound. In case you think that it is not, please explain how to
change the algorithm below so that the convergence time become shorter. (Say which variables needs to be 
added, rewrite the code and give an example in which the algorithm below takes a long time to converge and
the one you write takes a very short time to converge.) 

Page 11 out of 7 pages



Page 12 out of 7 pages


	Question 1 DNS (8 points)
	Question 2 IPv6 Addresses (6 points)
	Question 3 ICMPv6 (8 points)
	Question 4 (6 points) Socket API: select()

