
EDA322/DIT797:	exam	June’18	 1	out	of	11	

EDA322/	DIT797: Digital Design
Exam - June 2018

	
	
	
Date:	June	8,	2018	
	
Time:	14:00-18:00	
	
Examiner:	Ioannis	Sourdis	
	
Department:	Computer	Science	and	Engineering	
	
Inquiries:	Ioannis	Sourdis	(extension	1744);	will	visit	the	room	at	15:30	and	at	
17:00	
	
Results	and	grading	review:	room	4128	EDIT	on	June	29th	at	11:00.	
	
Duration:	4	hours	
	
Grading	scale:		100	points	in	total	
	
Chalmers:	
0:	0%-49%,	3:	50%-64%,	4:	65%-84%,	5:	85%-100%	
GU:		
Fail	 (U):	 0%-49%,	 Pass	 (G):	 50%-79%,	 Pass	with	Distinction	 (VG):	 80%-100%

	 	
Available	references:	a	calculator	is	allowed.	No	textbooks	or	

lecture	notes,	etc.	allowed.	
	
General:	Submit	your	solutions,	in	English,	on	blank	paper	sheets.	Write	legibly;	

feel	free	to	use	figures	to	get	your	point	across.	
	
	 The	order	of	answering	the	questions	does	not	matter	(start	with	the	easiest	

ones).	
	

Please	start	the	solutions	for	each	problem	on	a	new	sheet.	Please	number	
the	sheets	so	that	the	solutions	are	in	numerical	order.	
	
Note	that	it	is	possible	to	receive	partial	credit	for	an	answer	even	if	it	is	not	
100%	correct.	
	
Your	personal	identity	code	is	required	on	each	submitted	sheet!	
	
	
	
Good	luck!	 	

EDA322/DIT797:	exam	June’18	 2	out	of	11	

Question	1	Sequential	Circuits:	(10	points)	
Draw	the	(i)	gatelevel	block	diagram,	(ii)	the	truth	table	and	(iii)	the	state-diagram	
of	a	NAND-based	SR-latch.		
	
Answer	
	
The	 block	diagram	 can	 be	 observed	 on	 the	 left	 side	of	 the	 following	 figure.	 Its	
behavior	is	described	in	the	truth	table	on	the	right.	

	
The	state	diagram	of	the	NAND-SR	latch:	
	

	
	
When	SR	=	11,	there’s	no	state	change.	For	SR	=	00,	the	‘not-allowed’	state	QQ’	=	
11	is	reached.	When	SR	=	10,	we	have	QQ’	=	01,	i.e.	the	state	moves	to	QQ’	=	01	if	
it	was	in	QQ’	=	10,	otherwise	it	stays	in	QQ’	=	01.	The	opposite	reasoning	applies	
when	SR	=	01.	
	
	
	
Question	2	Interfaces:	(10	points)	
Give	one	example	of	a	digital	module	that	uses	each	of	the	following	interfaces:		

(i)	a	flow	control	interface,		
(ii)	a	push	flow	control	interface,	and		
(iii)	a	pull	flow	control	interface.		

Explain	your	choices.	

EDA322/DIT797:	exam	June’18	 3	out	of	11	

	
Answer	
The	input	of	a	FIFO	is	usually	a	flow	control	interface.	It	receives	a	request	signal	
that	 indicated	 data	 to	 be	 enqueued	 are	 “valid”	 and	 sends	 back	 to	 the	 sender	 a	
“ready”	(“not	full”)	signal	to	receive	new	data.	
	
The	write	port	of	a	memory	is	usually	a	push	flow	control	interface.	Data	are	ready	
to	be	written	in	a	memory	location	when	the	write	signal	is	set	(valid)	and	there	
is	no	 signal	 from	 the	memory	 to	 the	 sender	 indicating	whether	 the	memory	 is	
ready	to	receive	the	data	or	not.	
	
The	output	of	a	synchronous	memory	(that	has	no	read	enable	signal)	uses	a	pull	
interface	as	 it	 always	provides	valid	 content	 (the	 content	of	 the	memory	entry	
pointed	by	the	read	address	in	the	previous	cycle).	Another	example	could	be	the	
output	of	a	sensor	(e.g.	a	temperature	sensor)		
		

	
Question	3	FSMs:	(10	points)	
Minimize	the	states	of	the	FSM	described	by	the	following	state	table.	
	

	
	
Answer	
	

	
	

EDA322/DIT797:	exam	June’18	 4	out	of	11	

	
	
	
	
Question	4	Asynchronous:	(10	points)	
a)	Detect	any	race	conditions	in	the	asynchronous	circuit	defined	by	the	following	
state	table:	

	
	
b)	Make	the	necessary	modifications	to	eliminate	race	conditions	
	
Answer	
	
Lecture	on	asynchronous	slides	33,	34	
	
a)	Detect	the	race	condition	
	
Transition	from	A	(cab=000)	to	B	(110)	has	2	state	bits	changing,	“a”	and	“c”.	
	
If	“a”	changes	first	then	state	will	be	010	and	then,	when	“c”	changes,	it	will	be	110	
which	is	state	B.	
If	“c”	changes	first	then	the	end	state	will	be	C	(100)	which	then	changes	to	D	
	
b)	Fix	the	race	condition	
	
To	fix	the	race	condition	we	need	to	introduce	two	new	states:	
State	B1	(010):	when	input	changes	to	1	in	state	A	we	go	to	state	B1	and	then	to	B.	
	
State	D1	(101)	for	transition	from	state	C	(100)	to	state	D	(001)	
	

EDA322/DIT797:	exam	June’18	 5	out	of	11	

	
	
	
Question	5	Pipelining:	(10	points)	
Consider	 that	 an	 instruction	 requires	 to	 go	 through	 (all)	 the	 following	
microprocessor	steps	in	order	to	be	executed:	
	

1. Fetch:	instruction	read	
2. Read:	registers	(operands)	read	
3. ALU:	execute	instruction	
4. Mem:	Data	memory	access	
5. Write:	write	back	result	to	registers		

	
Consider	the	following	delays:		

• Fetch	1	ns,		
• Read	0,8	ns,			
• ALU	1,1	ns,		
• Mem	1	ns,		
• Write	0,8	ns	
• Setup	time	of	a	flipflop	0,1ns	
• Propagation	time	of	a	flipflop	0.1ns	
• Hold	time	of	a	flipflop	0,05ns	

	
What	would	be	the	latency	and	throughput	of	the	microprocessor	if		
a)	the	above	steps	are	performed	in	one	cycle	(unpipelined).	
b)	 the	microprocessor	 is	pipelined	and	each	of	 the	above	5	 steps	 is	 a	 separate	
pipeline	stage.	
	
	
Answer:		
a)		latency	=	1+0,8+1,1+1+0,8	=	4,7ns,		
throughput	=	1	instruction	per	4,7	ns	=	212	Minstr/sec	
	
b)	latency	=	5*(longest	stage)	=	5*(1,1+0,1+0,1)	=	5*1,3=	6,5	ns,		

EDA322/DIT797:	exam	June’18	 6	out	of	11	

throughput	=	1	instr.	per	the	longest	stage	delay	=	1instr.	/1,3ns	=	769	Minstr/sec	
	
	
	
Question	6	Testing	&	Timing:	(10	points)	
Draw	the	gate-level	block	diagram	of	a	4-bit	ripple	carry	adder.		
	
a)	How	would	you	modify	the	adder	to	also	support	subtraction?	
b)	Find	the	critical	path	delay	of	the	circuit	in	(a)	if	a	2-input	XOR	gate	has	a	latency	
of	2	ns	and	a	2-input	OR	or	AND	gate	has	a	latency	of	1	ns.	
c)	Find	two	input	test	vectors	for	the	circuit	in	(a),	one	testing	for	a	stuck-at-1	and	
the	other	for	a	stuck-at-0	in	the	carry-in	signal	of	the	4th	full	adder.	
	
Answer	
a)	One	of	the	inputs	XORed	with	a	signal	indicating	subtraction,	that	signal	also	
drives	the	carry-in	of	the	adder.	
	

	
	
	
b)	The	critical	path	is	12ns,	starting	from	b[0]	which	is	Xor-ed	with	the	SUB	signal	
to	Cout	or	r[3].		

EDA322/DIT797:	exam	June’18	 7	out	of	11	

	
	

	 XOR1	=	2ns		
	 1st	FA	=	(XOR)2ns	+	(AND)1ns	+	(OR)1ns	=	4ns	
	 2nd	FA	=	(AND)1ns	+	(OR)1ns	=	2ns	
	 3rd	FA	=	(AND)1ns	+	(OR)1ns	=	2ns	
	 4th	FA	=	(AND)1ns	+	(OR)1ns	=	2ns		
	 TOTAL	=	12ns	
	
c)	You	can	apply	the	path	sensitization	algorithm	to	activate	and	propagate	the	
fault.	Consider	the	inputs	SUB(C0),	a[0-3]	and	b[0-3]	of	the	4bit	adder.	
	
Stuck	at	0	in	the	carry	in	of	the	4th	full	adder	(C3):	
	
Then	 if	 a[2]=1	and	b[2]=1	 then	C3	should	be	1,	which	 is	 the	opposite	 than	 the	
stuck-at-0	value	so	it	activates	the	fault.		
	
To	propagate	the	fault,	we	need	to	propagate	the	C3	to	the	Cout	of	the	4th	full	adder.	
As	we	know	from	the	carry	 lookahead	equation	 for	carry	propagation	a[3]	and	
b[3]	should	have	different	values,	so	either	a[3]=1,	b[3]=0	or	a[3]=0,	b[3]=1	
	
Stuck	at	1	in	the	carry	in	of	the	4th	full	adder	(C3):	
Then	 if	 a[2]=0	and	b[2]=0	 then	C3	should	be	0,	which	 is	 the	opposite	 than	 the	
stuck-at-1	value	so	it	activates	the	fault.		
The	propagation	of	the	faulty	value	is	the	same	as	in	the	stuck-at-0	case.	
	
	
Question	7	Timing:	(10	points)	

a) What	is	clock	skew	and	how	can	it	be	avoided?	
b) What	 is	 metastability	 and	 how	 can	 it	 be	 avoided	 in	 a	 flip	 flop	 with	

asynchronous	input?	
	
Answer	
a)	the	clock	does	not	tick	at	every	flipflop	of	a	design	exactly	at	the	same	time.	It	
can	be	fixed	by	careful	layout	of	the	clock	tree	so	that	the	distance	between	the	
clock	generator	and	the	clock	tree	leaves	(that	give	clock	to	the	flipflops)	is	almost	
the	same.	This	can	be	done	using	a	H-tree	structure	of	a	clock	tree.	
	
b)	When	a	flipflop	input	changes	too	close	to	clock	edge	(after	the	setup-time	and	
before	the	hold	time),	the	flipflop	may	enter	the	metastable	state:	neither	a	logic	0	

EDA322/DIT797:	exam	June’18	 8	out	of	11	

nor	a	logic	1.	It	may	stay	in	this	state	an	indefinite	amount	of	time,	although	this	is	
not	likely	in	real	circuits.		
	
The	probability	of	failure	can	never	be	0,	but	it	can	be	reduced	by	:	
-	slowing	down	the	system	clock.	This	gives	the	synchronizer	more	time	to	decay	
into	a	steady	state.		
-	 using	 fastest	 possible	 logic	 in	 the	 synchronizer.	 This	makes	 for	 a	 very	 sharp	
"peak"	upon	which	to	balance	S	or	AS	TTL	D-FFs	are	recommended	
-	cascade	two	synchronizers	
	

	
	
Question	8	Memories:	(10	points)	
a)	Draw	the	gatelevel	block	diagram	of	a	4x3	memory	block	(4	entries	of	3	bits	
wide)	without	showing	the	internals	of	a	single	bit	memory	cell.		
b)	Create	a	8x6	memory	made	out	of	the	above	4x3	memory	blocks.	Draw	the	new	
gatelevel	block	diagram	(no	need	to	draw	again	the	internals	of	the	4x3	block).		
What	is(are)	the	name(s)	of	the	mechanism(s)	used	to	create	the	new	memory?	
			
Answer	
	
(a)		
	

	
	
(b)		
	

EDA322/DIT797:	exam	June’18	 9	out	of	11	

	
	
	
	

	
Question	9	Arithmetic:	(10	points)	
Draw	 the	 block	 diagram	 and	 describe	 the	 functionality	 of	 a	 3-bit	 sequential	
divider.	Show	how	you	can	use	it	to	perform	the	division	7/3.	
	
Answer	
	

	

EDA322/DIT797:	exam	June’18	 10	out	of	11	

M	and	$R	should	be	4	bits,	$Q	should	be	4	bits),	number	of	iterations	3.		
	
Action	 n	 $R	 $Q	 $M	
Init	 3	 0000	 111	 0011	
Shift	Left	{R,Q}	 3	 0001	 110	 0011	
Add	-M	to	R	 3	 1110	 110	 0011	
Restore		 3	 0001	 110	 0011	
Shift	Left	{R,Q}	 2	 0011	 100	 0011	
Add	-M	to	R	 2	 0000	 100	 0011	
R>0,	Q0	→	1	 2	 0000	 101	 0011	
Shift	Left	{R,Q}	 1	 0001	 010	 0011	
Add	-M	to	R	 1	 1110	 010	 0011	
Restore	 1	 0001	 010	 0011	
	 0	 	 	 	
	
	
7/3	=	2	with	remainder	$R=1		
	

Question	10	Reconfigurable	Hardware:	(10	points)	
Consider	the	implementation	of	the	following	function:		

	
F	=	A0A1A3	+	A1A2Ā3	+	Ā0Ā1Ā2	

	
in	3	different	FPGAs,	 each	 composed	of	 logic	 cells	with	either	 (i)	4-input	LUTs,						
(ii)	3-input	LUTs,	or	(iii)	2-input	LUTs.			
	
a)	Show	the	mapping	of	the	logic	of	function	F	in	each	of	the	3	types	of	FPGAs.	How	
many	LUTs	are	needed	in	each	case?	How	many	bits	of	SRAM	memory	needed	in	
total	for	each	case?		
	
b)	Which	is	the	most	efficient	choice	of	LUT	size	in	terms	of	area?	What	happens	
to	the	delay	of	the	function	implementation	in	each	case?		
	
Answer	
	
a)	
	
Only	1	4-input	LUT.		
Required	SRAM	memory:	2⁴	*1	=	16	bits		
================================	

EDA322/DIT797:	exam	June’18	 11	out	of	11	

	
3	LUTs.Required	SRAM	memory:	2³	*3	=	24	bits	
Required	SRAM	memory:	2³	*3	=	24	bits	
================================	

	
7	LUTs.	
Required	SRAM	memory:	2²*7	=	28	bits	
================================	
	
b)		
	
The	FPGA	with	4-input	LUTs	is	the	best	choice.	As	illustrated	in	the	figure	in	part	
(a),	this	option	requires	only	one	LUT	and	much	less	interconnects	which	makes	
it	the	most	efficient	choice	in	terms	of	area.		
On	the	other	hand,	although	larger	LUTs	are	slower	than	smaller	LUTs,	the	circuit	
depth	of	function	F	using	4-input	LUT	is	only	one.	Therefore,	due	to	having	lower	
interconnects	delay,	4-input	LUT	implementation	will	also	be	the	best	choice	in	
terms	of	speed.	
	
In	 general,	 the	 minimum	 LUT	 area	 is	 shown	 to	 be	 for	 K=4,	 but	 for	 different	
functions	the	most	efficient	size	of	LUT	inputs	depends	on	the	typical	complexity	
and	 structure	of	 the	 logic.	Bigger	LUTs	can	handle	 complicated	 functions	more	
efficiently	and	require	less	interconnects,	but	are	slower	than	smaller	LUTs	and	
are	less	area	efficient	for	regular	functions.	
	
	
END	of	EXAM	

