EDA321: Digital Design
 Solutions of Re-Exam - August 2013

Question 1: (5 points)

Apply deMorgan Theorems to the expressions:
$\overline{(A+B+C) D}$
$\overline{A B C+D E F}$
$\bar{A} \bar{B}+\bar{C} D+E F$
$\overline{A+B \bar{C}}+D(\overline{E+\bar{F}})$

Solution:

$\overline{(A+B+C) \cdot D}=\overline{A+B+C}+\bar{D}=\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{D}$
$\overline{A \cdot B \cdot C+D \cdot E \cdot F}=\overline{A \cdot B \cdot C} \cdot \overline{D \cdot E \cdot F}=(\bar{A}+\bar{B}+\bar{C}) \cdot(\bar{D}+\bar{E}+\bar{F})$
$\overline{A \cdot \bar{B}+\bar{C} \cdot D+E \cdot F}=\overline{A \cdot \bar{B}} \cdot \overline{\bar{C} \cdot D} \cdot \overline{E \cdot F}=(\bar{A}+B)(C+\bar{D})(\bar{E}+\bar{F})$
$\overline{\overline{A+B \bar{C}}+D \cdot \overline{(E+\bar{F})}}=(A+B \bar{C})(\overline{D \cdot(\overline{E+\bar{F}})})=(A \cdot B \bar{C})(\bar{D}+(E+\bar{F}))=(A+B \cdot \bar{C})(\bar{D}+E+\bar{F}))$

Question 2: (15 points)

Minimize the cost of the following function $F(x 0, x 1, x 2, x 3, x 4)=\Sigma(6,7,23,24,26,28)$
$+D(14,22,30)$. Measure the cost of the minimized function by counting the total number of 2-input gates of the circuit (e.g. $a^{*} b+c^{*} d$, has cost of 3).
a) Using Quine-McCluskey? (9 points)
b) using Karnaugh (6 points)

Solution:

$$
F\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum m(6,7,23,24,26,28)+D(14,22,30)
$$

a)

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\overline{x_{0}} \cdot x_{3} \cdot x_{4}+\overline{x_{3}} \cdot x_{2} \cdot x_{1}
$$

This form has a cost of 5 .
b)
using Quine-McCluskey:

6	00110
24	11000
7	00111
14	01110
22	10110
26	11010
28	11100
23	10111
30	11110

$6,7(1)$	$0011 \times$	$\sqrt{ }$
$6,14(8)$	0×110	$\sqrt{ }$
$6,22(16)$	$\times 0110$	$\sqrt{ }$
$24,26(2)$	110×0	$\sqrt{ }$
$24,28(4)$	11×00	$\sqrt{ }$
$7,23(16)$	$x 0111$	$\sqrt{ }$
$14,30(16)$	$x 1110$	$\sqrt{ }$
$22,23(1)$	$1011 \times$	$\sqrt{ }$
$22,30(8)$	1×110	$\sqrt{ }$
$26,30(4)$	11×10	$\sqrt{ }$
$28,30(2)$	111×0	$\sqrt{ }$

P1, P3 are essential prime implicants and cover the function F resulting in the following form:

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\overline{x_{0}} \cdot x_{3} \cdot x_{4}+\bar{x}_{3} \cdot x_{2} \cdot x_{1}
$$

This form has a cost of 5 .

Question 3: (20 points)

a) Describe an unsigned binary multiplication between a 4-bit multiplier $x 4 x 3 x 2 x 1$ and a 4 -bit multiplicand y4y3y2y1. (3 points)
b) Draw the circuit for a 4-bit Array Multiplier and describe how it works. (10 points)
c) Show the critical path of the 4-bit Array Multiplier? (3 points)
d) Why is it faster than a serial multiplier? (4 points)

Solution:

a) Lecture 11, slide 15
b) Lecture 11, slide 18
c) Lecture 11 , slide 18
(Above mentioned lecture slides can be found at the end of this document)
d)

A serial multiplier checks the LSbit of he multiplier and accordingly adds the multiplicand, subsequently it shifts the multiplier. In total a multiplication of N bits numbers needs N additions and N shifts of N -bit numbers.

Therefore, the serial multiplier would have a delay of:
N^{*} (delay of N -bit addition +N -bit shift) $>=\mathrm{N}^{*}$ (delay of N -bit addition) which is $>=\mathrm{N}^{*} \log \mathrm{~N}^{*}$ (FA delay) , assuming a CLA or $=\mathrm{N}^{*} \mathrm{~N}^{*}$ (FA delay), assuming a ripple carry adder

On the other hand the delay of the array multiplier is about $2^{*} \mathrm{~N}^{*}$ (FA delay) and consequently it is faster.

Question 4: (15 points)

Consider a sequence detector circuit, which detects the sequence "01". It has one input W and one output Z (each of 1-bit). The output Z is equal to 1 if in two consecutive (immediately preceding) clock cycles the input was equal to 0 and then 1; otherwise the value of Z is equal to 0 . All changes in the circuit occur on the positive edge of a clock signal.
e.g.

Clock cycle:	$T 0$	$T 1$	$T 2$	$T 3$	$T 4$	$T 5$	$T 6$	$T 7$	$T 8$	$T 9$
W:	0	1	0	1	1	0	0	0	1	1
$Z:$	0	0	1	0	1	0	0	0	0	1

a) Draw the state diagram of the circuit. (2 point)
b) Fill in the state table of the circuit and make a state assignment. (5 points)
c) Draw the actual implementation of the circuit after extracting the Boolean functions of each D-flip-flop. (5 points)
d) Did you create a Mealy or a Moore type of circuit? What is the difference between the two types? (2 points)
e) What was your choice for the state-assignment? Why? (1 point)

Solution:

a) similar to Lecture 4 , slides $38-40$
b) similar to Lecture 4 , slides 41-42
c) similar to Lecture 4 , slides 44-45
(Above mentioned lecture slides can be found at the end of this document)
d) first part of the answer depends on your implementation. The output of a Moore type FSM depends only on the current state, while the output of a Mealy depends in addition to the input of the FSM.
e) Depends on your state assignment. In general a binary or gray encoding would require less bits than a one-hot encoding, while the later would be faster. In some cases the binary would be slower than the gray encoding, but this depends on the state-diagram, how the transitions between states happen, and how can one "match" the output encoding with the stateassignment.

Question 5: (8 points)

Use partitioning to minimize the number of states in the following Finite State Machine (FSM).

a) First create the state table of the FSM. (1 points)
b) Minimize the number of state using partitioning. (5 points)
c) Create the state table of the minimized version of the FSM. (1point)
d) Draw the state diagram of the minimized version of the FSM. (1point)

Solution:

Input Sequence	Present State	Next State		Output	
		X=0	X=1	X=0	$\mathrm{X}=1$
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	0
1	S2	S5	S6	0	0
00	S3	SO	S0	0	0
01	S4	SO	SO	1	0
10	S5	SO	SO	0	0
11	S6	SO	SO	1	0

b)

P1 = (S0 S1 S2 S3 S4 S5 S6)
P2= (S0 S1 S2 S3 S5) (S4 S6)
P3= (S0 S3 S5) (S1 S2) (S4 S6)
$\mathrm{P} 4=(\mathrm{S} 0)(\mathrm{S} 3 \mathrm{~S} 5)(\mathrm{S} 1 \mathrm{~S} 2)(\mathrm{S} 4 \mathrm{~S} 6)$
c)

Input		Next State		Output	
Sequence	Present State	X=0	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
Reset	S0	S1'	S1'	0	0
$0+1$	S1'	S3'	S4'	0	0
X0	S3'	S0	S0	0	0
X1	S4'	S0	S0	1	0

d)

Question 6: (9 points)

(a) (6 points)

Draw the block diagram of a 4×4 memory, using as "building blocks" D flip-flops and logic gates. The memory has the following inputs:

- DataIN(0), DataIN(1), DataIN(2), DataIN(3),
- Write-enable,
- Address(0), Address(1)
- Reset, Clock

And the following outputs:

- DataOUT(0), DataOUT(1), DataOUT(2), DataOUT(3),

The D flip-flop has the following interface:

(b) (3 points)

Taking the above 4×4 memory as a black box (not having the ability to change its internal design) what can we add to use it as a 16x1 memory?

Solution:

a) lecture 11, slide 34 (but for 4×4 instead of 4×3)
b) a column multiplexer as shown in lecture 11, slide 39
(Above mentioned lecture slides can be found at the end of this document)

Question 7: (5 points)

Explain the advantages and disadvantages of the following computing alternatives:

1. ASICs (Application Specific Integrated Circuits)
2. Field Programmable gate Arrays (FPGAs)
3. General Purpose processors (running software)

Solution:

Lecture 12 Slide 3
(Above mentioned lecture slides can be found at the end of this document)

Question 8: (12 points)

Explain the timing constraints of a D flip-flop.
a) What is the propagation time, setup time and hold time? (6 points)
b) Make a timing diagram to show the above time constraints in a D flip-flop. (3 points)
c) Explain when a flip-flop may enter a metastable state. (3 points)

Solution:

a) In lecture 16 slide 18
b) something similar to lecture 16 slide 19
c) In lecture 16 slide 31
(Above mentioned lecture slides can be found at the end of this document)

Question 9: (6 points)

a) Explain the difference between permanent, transient and intermittent faults. (3 points)
b) Name at least 2 causes for each type of faults. (3 points)

Solution:

In lecture 13 slide 5
(Above mentioned lecture slides can be found at the end of this document)

Question 10: (5 points)

What is the yield for the following wafer:

Good chips

Faulty chips

Defects Wafer

Solution:
Lecture 13 slide 10
(Above mentioned lecture slides can be found at the end of this document)

Lecture Slides

Question 3:

Adding Partial Products

multiplicand 1000 two $=8_{\text {ten }}$ multiplier 1001 two $=9_{\text {ten }}$	
1000	
0000	
0000	
1000	
$1001000_{\text {two }}=72_{\text {ten }}$	

$y 3$	$y 2$	$y 1$	$y 0$
$x 3$	$x 2$	$x 1$	$x 0$
$x 0 y 3$	$x 0 y 2$	$x 0 y 1$	$x 0 y 0$
x1y2	$x 1 y 1$	$x 1 y 0$	
x2y1	$x 2 y 0$		
x3y0			

multiplicand multiplier
four
partial products to be summed

EDA322 Digital Design,
2015-2016, Lecture 11

Manual design steps (1): specifications

Specifications:

1. the circuit has one input, w, and one output, z.
2. all changes in the circuit occur on the positive edge of a clock signal.
3. the output z is equal to 1 if during two immediately preceding clock cycles the input w was equal to 1. otherwise, the value of z is equal to 0 .

Clockcycle:	$\mathbf{t}_{\mathbf{0}}$	$\mathbf{t}_{\mathbf{1}}$	$\mathbf{t}_{\mathbf{2}}$	$\mathbf{t}_{\mathbf{3}}$	$\mathbf{t}_{\mathbf{4}}$	$\mathbf{t}_{\mathbf{5}}$	$\mathbf{t}_{\mathbf{6}}$	$\mathbf{t}_{\mathbf{7}}$	$\mathbf{t}_{\mathbf{8}}$	$\mathbf{t}_{\mathbf{9}}$	$\mathbf{t}_{\mathbf{1 0}}$
$\boldsymbol{w}:$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\boldsymbol{z}:$	0	0	0	0	0	1	0	0	1	1	0

Manual design steps (2): state diagram

- starting state A : when power is on or reset signal is applied.
- As long as w is 0 , it remains in A.
- After $w \rightarrow 1$, it moves to state B.
- Then,
- If $w \rightarrow 0$, it moves back to state A.
- If $w \rightarrow 1$, it moves to state C, and $z=1$.
- When in state C ,
- If $w \rightarrow 0$, back to state A, and $z=0$;
- If $w \rightarrow 1$, remain in state C .

Figure 8.3. State diagram of a simple sequential circuit.

Manual design steps (3): state table

From the state diagram, we have the state table

Manual design steps (4): state assignment

A: 00 B: 01 C: 10		Present state $y_{2} y_{1}$	Next state		Output z
			$\boldsymbol{w}=0$	$\boldsymbol{w}=1$	
			$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A		00	00	01	0
B		01	00	10	0
	C	10	00	10	1
		11	dd	dd	d

Manual design steps (5): implementation

From state-assigned table: we have the following Karnaugh maps

EDA322 Digital Design,
2015-2016, Lecture 4

Final implementation

Question 6:

Memory Example

Column MUX in ROMs and RAMs:

- Controls physical aspect ratio
- In DRAM, allows reuse of chip address pins

1 KX 1 ROM

256×4 ROM

Question 7:

Computing alternatives

Hardware (Application Specific Integrated Circuits)

Advantages:

- very high performance and efficient Disadvantages:
- not flexible (can't be altered after
fabrication)
- High NRE Cost

EDA322 Digital design,
2015-2016, Lecture 12

Reconfigurable computing

Advantages:
-much higher performance than software / lower performance than ASIC

- higher level of flexibility than hardware / more difficult to program than SW
-fills the gap between hardware and software

Software-programmed processors

Advantages:

- software is very flexible to change Disadvantages:
- performance can suffer if clock is not fast
- fixed instruction set by hardware

Question 8:

Delay in Flip-flops

$\mathrm{T}_{\text {su }}=$ setup time
(the time the input of a flip flop needs to be stable before the clock edge to be stored correctly)
$\mathrm{T}_{\mathrm{h}}=$ hold time
(the time the input of a flip flop needs to be held after the clock edge to be stored correctly)
$\mathrm{T}_{\mathrm{p}}=$ propagation time (clock to Q) (the time a flip-flop needs to propagate a value stored to the output)

Time parameters for clocked memory elements

Data-
signal $\left(D=q_{i}^{+}\right)$
Klock-
signal (CP)

Utsignal $\left(q_{i}\right)$

Metastability and Asynchronous Inputs

Synchronizer Failure

In ? When FF input changes close to clock edge, the FF may enter the metastable state: neither a logic 0 nor a logic 1

It may stay in this state an indefinate amount of time, although this is not likely in real circuits

Small, but non-zero probability that the FF output will get stuck in an in-between state

Oscilloscope Traces Demonstrating Synchronizer Failure and Eventual Decay to Steady State

Question 9:

Types of Faults

- Transient faults

- Faults that happen only once
- and it's VERY unlikely to happen again
- Causes:
- Electromagnetic Interference
- Neighbors mobile phone
- Static electricity
- Various particles hitting the silicon surface
- Heavy ions such as iron, α particles, neutrons.
- Internal effects
- Crosstalk, metastability, power supply disturbances
- Permanent faults
- Faults that are always there
- Causes:
- Design defects
- Manufacturing defects
- Transistor aging
- Intermittent faults
- Faults that come and go (probably periodically)
- Causes: Variations
- Static: transistors on a chip may not be exactly the same although they were supposed to be
- Dynamic: temperature changes

Circuit Fabrication and Defects

$$
\text { yield }=\text { number of working chips produced }
$$

Total number of chips produced
Wafer yield $=17 / 22=0.77$

