
CHALMERS TEKNISKA HÖGSKOLA August 2012.
Dept. of Computer Science and Engineering Programming Paradigms
Jean-Philippe Bernardy DAT121 / DIT331(GU)

Exam in Programming Paradigms

August 2012.
Examiner: John Hughes
Lecturer: Jean-Philippe Bernardy

Permitted aids: Pen and paper.

There are 6 questions: each worth 10 points. The total sum is 60 points.

Some questions come with remarks: you must take those into account. Some
questions come with hints: you may ignore those.

You will be asked to write programs in various paradigms. Choose the language
appropriately in each case, and indicate which you choose at the beginning of
your answer.

Paradigm Acceptable language
Imperative C or (an OO language where you refrain to use Objects)

Object oriented C++ or Java
Functional Haskell, ML
Concurrent Erlang, Concurrent-Haskell

Logic Prolog, Curry

You may also use pseudo-code ressembling an actual language in the relevant list.
In that case, make sure your code can only be interpreted in the way you intent
(the responsibility lies with you). In particular, in the case of functional/logic
languages, omitting parentheses is NOT acceptable: a b c is not acceptable
pseudo-code for a (b c).

Chalmers: 24 points is required to pass (grade 3), 36 points is required for
grade 4, and 48 points is required for grade 5.

GU: 24 points is required to pass (grade G) and 42 points is required for grade
VG.

1



1 Generalities

Suppose that you are facing the task to translate an application written in
Erlang into an imperative language like C. This can be done by a sequence of
transformations seen in the course. List a sequence of transformations seen in
the course that, if applied in the order given, will transform the Erlang program
to an imperative program easy to write in C syntax.

Reminder: Erlang is a functional language equipped with concurrency features
such as channels and processes.

2 Explicit Stack

Consider the Ackermann function, defined as follows:

function a(m,n)

if m = 0

return n+1

else if n = 0

return a(m-1,1)

else

return a(m-1,a(m,n-1))

• Write a version of the Ackermann function that does not use recursion,
but may use an explicit stack.

• Is it possible to tail-call optimise some recursive calls? List which calls
which can be optimised:

1. a(m-1,1)

2. a(m-1,a(m,n-1))

3. a(m,n-1)

Hints: you should first define the type of values that you can push on the stack,
and you can assume that labels can be used as values.

Note: Optimising all possible tail-calls is worth only 2 points.

2



3 Objects from records

Consider the following C++ code, which is an encoding of a class hierarchy.

struct C {

float x;

float y;

};

struct B {

void *m(B*, B*);

int f;

void *n(B*, C*);

int g;

};

struct A {

void *m(A*, B*);

int f;

};

void B_n(B* p, C* q) {

q->x += p->f;

q->y += p->g;

}

void B_m (B* p, B* q) {

q->f += p->f;

q->g += p->g;

}

void A_m(A* p, B* q) {

q->f += p->f;

}

Write the original class hierarchy in a C++-like or Java-like language.

Quick refresher:

• If A is a type, then A* is the type of pointers to A.

• void *f(A,B,...) stands for a pointer to a function f taking arguments
A,B,...

• p->f is used to access a field f in a structure pointed by p.

3



4 Closures

Consider the Haskell program:

g [] = []

g (p:ps) = p : g (filter (\x -> x ‘mod‘ p == 0) ps)

filter f [] = []

filter f (x:xs) = if p x

then x : filter f xs

else filter f xs

Transform the code to use explicit closures. That is, use a Haskell data structure
to represent λ-expressions.

Remarks:

• All higher-order functions must be removed.

• You cannnot specialize any higher-order function (eg. don’t make a special
version of filter which can test only divisibility). Use closures.

5 Continuations

Consider the following function, which computes the fibbonaci number of its
argument.

fib 0 = return 1

fib n = do x1 <- fib (n-1)

yield

x2 <- fib (n-2)

return (x1 + x2)

The above algorithm will be used on very big numbers, hence potentially running
for a long time, concurrently with other processes. Therefore, the implementer
of fib has decided to insert a call to yield, which performs no useful computa-
tional task, but gives the opportunity for the runtime environment to schedule
another processes. (The computation of the fibbonaci number will be continued
later.)

Transform fib to use explicit continuations. Remarks:

• In the translation, you will use a different version of yield, which takes
an explicit continuation as argument.

• The translation of fib should also take an explicit continuation as argu-
ment.

• Do not change the algorithm. Do not “optimize” it.

4



6 Relations to lists of successes

Consider the Curry program

ancestor a c = (parent a x & ancestor x c) | a =:= c

Convert the program from relational to functional style. That is, write a func-
tion ancestors that returns all the ancestors of a given person. More precisely,
given a person c, construct the list of xs such that ancestor x c is true.

To do so, you may assume that you have at your disposal a function parents

which returns the list of xs such that parent x c is true.

Hints:

• Remember that | stands for logical disjunction and & stands for logical
conjunction.

• Begin by writing the types of the functions ancestors and parents.

5


